Traditional origami structures fold along predefined hinges, and the neighboring facets of the hinges are folded to transform planar surfaces into three-dimensional (3D) shapes. In this study, we present a new self-folding design and fabrication approach that has no folding hinges and can build 3D structures with smooth curved surfaces. This four-dimensional (4D) printing method uses a thermal-response control mechanism, where a thermo shrink film is used as the active material and a photocurable material is used as the constraint material for the film. When the structure is heated, the two sides of the film will shrink differently due to the distribution of the constraint material on the film. Consequently, the structure will deform over time to a 3D surface that has no folding hinges. By properly designing the coated constraint patterns, the film can be self-folded into different shapes. The relationship between the constraint patterns and their correspondingly self-folded surfaces has been studied in the paper. Our 4D printing method presents a simple approach to quickly fabricate a 3D shell structure with smooth curved surfaces by fabricating a structure with accordingly designed material distribution.

References

References
1.
Tibbits
,
S.
,
2014
, “
4D Printing: Multi-Material Shape Change
,”
Archit. Des.
,
84
(
1
), pp.
116
121
.
2.
Ge
,
Q.
,
Dunn
,
C. K.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2014
, “
Active Origami by 4D Printing
,”
Smart Mater. Struct.
,
23
(
9
), p.
094007
.
3.
Kwok
,
T. H.
,
Wang
,
C. C. L.
,
Deng
,
D.
,
Zhang
,
Y.
, and
Chen
,
Y.
,
2015
, “
4D Printing for Freeform Surfaces: Design Optimization of Origami Structures
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111413
.
4.
Bakarich
,
S. E.
,
Gorkin
,
R.
,
Panhuis
,
M. I. H.
, and
Spinks
,
G. M.
,
2015
, “
4D Printing With Mechanically Robust, Thermally Actuating Hydrogels
,”
Macromol. Rapid Commun.
,
36
(
12
), pp.
1211
1217
.
5.
Mao
,
Y.
,
Yu
,
K.
,
Isakov
,
M. S.
,
Wu
,
J.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2015
, “
Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers
,”
Sci. Rep.
,
5
(
1
), p.
13616
.
6.
Randall
,
C. L.
,
Kalinin
,
Y. V.
,
Jamal
,
M.
,
Shah
,
A.
, and
Gracias
,
D. H.
,
2011
, “
Self-Folding Immunoprotective Cell Encapsulation Devices
,”
Nanomed.: Nanotechnol., Biol., Med.
,
7
(
6
), pp.
686
689
.
7.
Malachowski
,
K.
,
Jamal
,
M.
,
Jin
,
Q.
,
Polat
,
B.
,
Morris
,
C. J.
, and
Gracias
,
D. H.
,
2014
, “
Self-Folding Single Cell Grippers
,”
Nano Lett.
,
14
(
7
), pp.
4164
4170
.
8.
Breger
,
J. C.
,
Yoon
,
C.
,
Xiao
,
R.
,
Kwag
,
H. R.
,
Wang
,
M. O.
,
Fisher
,
J. P.
, Nguyen, T. D., and Gracias, D. H.,
2015
, “
Self-Folding Thermo-Magnetically Responsive Soft Microgrippers
,”
ACS Appl. Mater. Interfaces
,
7
(
5
), pp.
3398
3405
.
9.
Guan
,
J.
,
He
,
H.
,
Lee
,
L. J.
, and
Hansford
,
D. J.
,
2007
, “
Fabrication of Particulate Reservoir-Containing, Capsulelike, and Self-Folding Polymer Microstructures for Drug Delivery
,”
Small
,
3
(
3
), pp.
412
418
.
10.
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2012
, “
Self-Folding Polymeric Containers for Encapsulation and Delivery of Drugs
,”
Adv. Drug Delivery Rev.
,
64
(
14
), pp.
1579
1589
.
11.
He
,
H.
,
Guan
,
J.
, and
Lee
,
J. L.
,
2006
, “
An Oral Delivery Device Based on Self-Folding Hydrogels
,”
J. Controlled Release
,
110
(
2
), pp.
339
346
.
12.
An
,
B.
,
Benbernou
,
N.
,
Demaine
,
E. D.
, and
Rus
,
D.
,
2011
, “
Planning to Fold Multiple Objects From a Single Self-Folding Sheet
,”
Robotica
,
29
(
1
), pp.
87
102
.
13.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
Applied Origami. A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
14.
Sun
,
X.
,
Felton
,
S. M.
,
Niiyama
,
R.
,
Wood
,
R. J.
, and
Kim
,
S.
,
2015
, “
Self-Folding and Self-Actuating Robots: A Pneumatic Approach
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
3160
3165
.
15.
Miyashita
,
S.
,
Guitron
,
S.
,
Ludersdorfer
,
M.
,
Sung
,
C. R.
, and
Rus
,
D.
,
2015
, “
An Untethered Miniature Origami Robot That Self-Folds, Walks, Swims, and Degrades
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
1490
1496
.
16.
Miyashita
,
S.
,
Meeker
,
L.
,
Tolley
,
M. T.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2014
, “
Self-Folding Miniature Elastic Electric Devices
,”
Smart Mater. Struct.
,
23
(
9
), pp.
1
9
.
17.
Miyashita
,
S.
,
Meeker
,
L.
,
Gouldi
,
M.
,
Kawahara
,
Y.
, and
Rus
,
D.
,
2014
, “
Self-Folding Printable Elastic Electric Devices: Resistor, Capacitor, and Inductor
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
1446
1453
.
18.
Hayes
,
G. J.
,
Liu
,
Y.
,
Genzer
,
J.
,
Lazzi
,
G.
, and
Dickey
,
M. D.
,
2014
, “
Self-Folding Origami Microstrip Antennas
,”
IEEE Trans. Antennas Propag.
,
62
(
10
), pp.
5416
5419
.
19.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
,
Galvan
,
E.
, and
Malak
,
R.
,
2013
, “
Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111007
.
20.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
, and
Malak
,
R. J.
, Jr.
,
2013
, “
Design and Numerical Analysis of an SMA Mesh-Based Self-Folding Sheet
,”
Smart Mater. Struct.
,
22
(
9
), p.
094008
.
21.
Felton
,
S. M.
,
Becker
,
K. P.
,
Aukes
,
D. M.
, and
Wood
,
R. J.
,
2015
, “
Self-Folding With Shape Memory Composites at the Millimeter Scale
,”
J. Micromech. Microeng.
,
25
(
8
), p.
085004
.
22.
Ding
,
Z.
,
Wei
,
P.
, and
Ziaie
,
B.
,
2010
, “
Self-Folding Smart 3D Microstructures Using a Hydrogel-Parylene Bilayer
,”
18th Biennial University/Government/Industry Micro/Nano Symposium
(
UGIM
), West Lafayette, IN, June 28–July 1, pp. 1–4.
23.
Guan
,
J.
,
He
,
H.
,
Hansford
,
D. J.
, and
Lee
,
L. J.
,
2005
, “
Self-Folding of Three-Dimensional Hydrogel Microstructures
,”
J. Phys. Chem. B
,
109
(
49
), pp.
23134
23137
.
24.
De Leon
,
A.
,
Barnes
,
A. C.
,
Thomas
,
P.
,
O'Donnell
,
J.
,
Zorman
,
C. A.
, and
Advincula
,
R. C.
,
2014
, “
Transfer Printing of Self-Folding Polymer-Metal Bilayer Particles
,”
ACS Appl. Mater. Interfaces
,
6
(
24
), pp.
22695
22700
.
25.
Pickett
,
G. T.
,
2007
, “
Self-Folding Origami Membranes
,”
EPL (Europhys. Lett.)
,
78
(
4
), p.
48003
.
26.
Guo
,
W.
,
Li
,
M.
, and
Zhou
,
J.
,
2013
, “
Modeling Programmable Deformation of Self-Folding All-Polymer Structures With Temperature-Sensitive Hydrogels
,”
Smart Mater. Struct.
,
22
(
11
), p.
115028
.
27.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.
28.
Liu
,
Y.
,
Miskewicz
,
M.
,
Ecsuti
,
M. J.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2014
, “
Three-Dimensional Folding of Pre-Strained Polymer Sheets Via Absorption of Laser Light
,”
J. Appl. Phys.
,
115
(
20
), p.
204911
.
29.
Lee
,
Y.
,
Lee
,
H.
,
Hwang
,
T.
,
Lee
,
J.
, and
Cho
,
M.
,
2015
, “
Sequential Folding Using Light-Activated Polystyrene Sheet
,”
Sci. Rep.
,
5
(
1
), p.
16544
.
30.
Felton
,
S. M.
,
Tolley
,
M. T.
,
Shin
,
B.
,
Onal
,
C. D.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2013
, “
Self-Folding With Shape Memory Composites
,”
Soft Matter
,
9
(
32
), pp.
7688
7694
.
31.
Tolley
,
M. T.
,
Felton
,
S. M.
,
Miyashita
,
S.
,
Aukes
,
D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2014
, “
Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating
,”
Smart Mater. Struct.
,
23
(
9
), pp.
1
9
.
32.
Deng
,
D.
, and
Chen
,
Y.
,
2015
, “
Origami-Based Self-Folding Structure Design and Fabrication Using Projection Based Stereolithography
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021701
.
33.
Yonekura
,
K.
, and
Watanabe
,
O.
,
2014
, “
A Shape Parameterization Method Using Principal Component Analysis in Applications to Parametric Shape Optimization
,”
ASME J. Mech. Des.
,
136
(
12
), p.
121401
.
34.
Murray
,
A.
,
Schmiedeler
,
J.
, and
Korte
,
B.
,
2008
, “
Kinematic Synthesis of Planar, Shape-Changing Rigid-Body Mechanisms
,”
ASME J. Mech. Des.
,
130
(
3
), p.
032302
.
35.
Bouaziz
,
S.
,
Deuss
,
M.
,
Schwartzburg
,
Y.
,
Weise
,
T.
, and
Pauly
,
M.
,
2012
, “
Shape-Up: Shaping Discrete Geometry With Projections
,”
Comput. Graphics Forum
,
31
(
5
), pp.
1657
1667
.
36.
Xie
,
W.
,
Zhang
,
Y.
,
Wang
,
C.
, and
Chung
,
R.
,
2014
, “
Surface-From-Gradients: An Approach Based on Discrete Geometry Processing
,”
IEEE Conference on Computer Vision and Pattern Recognition
(
CVPR
), Columbus, OH, June 23–28, pp.
2203
2210
.
37.
Cignoni
,
P.
,
Rocchini
,
C.
, and
Scopigno
,
R.
,
1998
, “
Metro: Measuring Error on Simplified Surfaces
,”
Comput. Graphics Forum
,
17
(
2
), pp.
167
174
.
38.
Huang
,
P.
,
Deng
,
D.
, and
Chen
,
Y.
,
2013
, “
Modeling and Fabrication of Heterogeneous Three-Dimensional Objects Based on Additive Manufacturing
,”
24th International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
(
SFF
), Austin, TX, Aug. 12–14, pp.
215
230
.https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-17-Huang.pdf
39.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Rapid Prototyping J.
,
19
(
3
), pp.
153
165
.
40.
Song
,
X.
,
Chen
,
Y.
,
Lee
,
T. W.
,
Wu
,
S.
, and
Cheng
,
L.
,
2015
, “
Ceramic Fabrication Using Mask-Image-Projection-Based Stereolithography Integrated With Tape-Casting
,”
J. Manuf. Processes
,
20
(Part 3), pp.
456
464
.
41.
Xu
,
K.
, and
Chen
,
Y.
,
2016
, “
Photocuring Temperature Study for Curl Distortion Control in Projection Based Stereolithography
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021002
.
You do not currently have access to this content.