Large wind turbines typically have variable rotor speed capability that increases power production. However, the cost of this technology is more significant for small turbines, which have the highest cost-per-watt of energy produced. This work presents a low-cost system for applications where cost and reliability are of concern. The configuration utilizes the fixed-speed squirrel cage induction generator. It is combined with a variable ratio gearbox (VRG) that is based on the automated-manual automotive transmission. The design is simple, low cost and implements reliable components. The VRG increases efficiency in lower wind speeds through three discrete rotor speeds. In this study, it is implemented with active blades. The contribution of this work is a methodology that synthesizes the selection of the gearbox ratios with the control design. The design objectives increase the power production while mitigating the blade stress. Top-down dynamic programming reduces the computational expense of evaluating the performance of multiple gearbox combinations. The procedure is customizable to the wind conditions at an installation site. A case study is presented to demonstrate the ability of the strategy. It employs a 300 kW wind turbine drivetrain model that simulates power production. Two sets of wind data representing low and high wind speed installation sites were used as the input. The results suggest a VRG can improve energy production by up to 10% when the system operates below the rated wind speed. This is also accompanied by a slight increase in the blade-root stress. When operating above the rated speed, the stress decreases through the optimal selection of gear combinations.

References

References
1.
Wiser, R., Lantz, E., Mai, T., Zayas, J., DeMeo, E., Eugeni, E., Lin-Powers, J., and Tusing, R.,
2015
, “
Wind Vision: A New Era for Wind Power in the United States
,” U.S. Department of Energy, Washington, DC, Technical Report No.
DOE/GO-102015-4557
.https://www.energy.gov/sites/prod/files/wind_vision_highlights.pdf
2.
IEA Wind,
2013
, “
Long-Term Research and Development Needs for Wind Energy for the Time Frame 2012 to 2030
,”
International Energy Agency
, Paris, France.https://www.ieawind.org/long-term%20reports/IEA%20Long%20Term%20R_D_Approved%20July%2023%202013.pdf
3.
Abdullah
,
M. A.
,
Yatim
,
A. H. M.
,
Tan
,
C. W.
, and
Saidur
,
R.
,
2012
, “
A Review of Maximum Power Point Tracking Algorithms for Wind Energy Systems
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3220
3227
.
4.
Narayana
,
M.
,
Putrus
,
G.
,
Jovanovic
,
M.
,
Leung
,
P. S.
, and
McDonald
,
S.
,
2012
, “
Generic Maximum Power Point Tracking Controller for Small-Scale Wind Turbines
,”
Renewable Energy
,
44
, pp.
72
79
.
5.
Eltamaly
,
A. M.
, and
Farh
,
H. M.
,
2013
, “
Maximum Power Extraction From Wind Energy System Based on Fuzzy Logic Control
,”
Electr. Power Syst. Res.
,
97
, pp.
144
150
.
6.
Beltran
,
B.
,
El Hachemi Benbouzid
,
M.
, and
Ahmed-Ali
,
T.
,
2012
, “
Second-Order Sliding Mode Control of a Doubly Fed Induction Generator Driven Wind Turbine
,”
IEEE Trans. Energy Convers.
,
27
(
2
), pp.
261
269
.
7.
Hall
,
J. F.
, and
Chen
,
D.
,
2013
, “
Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation—Part 1: System Model and Control Framework
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(1), p. 011016.
8.
Xue
,
Y.
,
Chang
,
L.
,
Kjær
,
S. B.
,
Bordonau
,
J.
, and
Shimizu
,
T.
,
2004
, “
Topologies of Single-Phase Inverters for Small Distributed Power Generators: An Overview
,”
IEEE Trans. Power Electron.
,
19
(
5
), pp.
1305
1314
.
9.
Arifujjaman
,
M.
,
Iqbal
,
M. T.
, and
Quaicoe
,
J. E.
,
2009
, “
Reliability Analysis of Grid Connected Small Wind Turbine Power Electronics
,”
Appl. Energy
,
86
(
9
), pp.
1617
1623
.
10.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2014
, “
Design, Modeling, and Simulation of a Geared Infinitely Variable Transmission
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071011
.
11.
Petković, D., Ćojbašić, Ž., Nikolić, V., Shamshirband, S., Kiah, M. L. M., Anuar, N. B., and Wahab, A. W. A.,
2014
, “
Adaptive Neuro-Fuzzy Maximal Power Extraction of Wind Turbine With Continuously Variable Transmission
,”
Energy
,
64
, pp. 868–874.
12.
Zhao
,
X.
, and
Maißer
,
P.
,
2003
, “
A Novel Power Splitting Drive Train for Variable Speed Wind Power Generators
,”
Renewable Energy
,
28
(
13
), pp.
2001
2011
.
13.
Fischetti
,
M.
,
2006
, “
No More Gears
,”
Sci. Am.
,
294
(1), pp.
92
93
.
14.
Hall
,
J. F.
, and
Chen
,
D.
,
2013
, “
Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation—Part 2: Control Design
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(1), p. 011017.
15.
Adams
,
D.
,
White
,
J.
,
Rumsey
,
M.
, and
Farrar
,
C.
,
2011
, “
Structural Health Monitoring of Wind Turbines: Method and Application to a HAWT
,”
Wind Energy
,
14
(
4
), pp.
603
623
.
16.
Alemayehu
,
F. M.
, and
Ekwaro-Osire
,
S.
,
2013
, “
Loading and Design Parameter Uncertainty in the Dynamics and Performance of High-Speed-Parallel-Helical Stage of a Wind Turbine Gearbox
,”
ASME
Paper No. DETC2013-13638.
17.
Park
,
Y.-J.
,
Lee
,
G.-H.
,
Song
,
J.-S.
, and
Nam
,
Y.-Y.
,
2013
, “
Characteristic Analysis of Wind Turbine Gearbox Considering Non-Torque Loading
,”
ASME J. Mech. Des.
,
135
(4), p.
044501
.
18.
Pourrajabian
,
A.
,
Afshar
,
P. A. N.
,
Ahmadizadeh
,
M.
, and
Wood
,
D.
,
2016
, “
Aero-Structural Design and Optimization of a Small Wind Turbine Blade
,”
Renewable Energy
,
87
(Pt. 2), pp.
837
848
.
19.
Lubitz
,
W. D.
,
2014
, “
Impact of Ambient Turbulence on Performance of a Small Wind Turbine
,”
Renewable Energy
,
61
, pp.
69
73
.
20.
Kaygusuz
,
K.
,
2012
, “
Energy for Sustainable Development: A Case of Developing Countries
,”
Renewable Sustainable Energy Rev.
,
16
(
2
), pp.
1116
1126
.
21.
Rex
,
A. H.
, and
Johnson
,
K. E.
,
2009
, “
Methods for Controlling a Wind Turbine System With a Continuously Variable Transmission in Region 2
,”
ASME J. Sol. Energy Eng.
,
131
(3), p. 031012.
22.
Hansen
,
M. O. L.
,
2008
,
Aerodynamics of Wind Turbines
,
Earthscan
, London.
23.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
1948
,
Wind Energy Explained: Theory, Design and Application
,
2nd ed.
,
Wiley
,
Chichester, UK
.
24.
Kulunk
,
E.
,
2011
, “
Aerodynamics of Wind Turbines
,”
Fundamental and Advanced Topics in Wind Power
,
R.
Carriveau
, ed.,
InTech
, Rijeka, Croatia.
25.
Clausen
,
P. D.
,
Reynal
,
F.
, and
Wood
,
D. H.
,
2013
, “
Design, Manufacture and Testing of Small Wind Turbine Blades
,”
Advances in Wind Turbine Blade Design and Materials
,
P.
Brøndsted
and
R. P. L.
Nijssen
, eds.,
Woodhead Publishing
, Cambridge, UK, pp.
413
431
.
26.
Poore
,
R.
,
2000
, “
NWTC AWT-26 Research and Retrofit Project—Summary of AWT-26/27 Turbine Research and Development
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/SR-500-26926
.https://digital.library.unt.edu/ark:/67531/metadc708771/m2/1/high_res_d/752530.pdf
27.
Mullane
,
A.
, and
O'Malley
,
M.
,
2005
, “
The Inertial Response of Induction-Machine-Based Wind Turbines
,”
IEEE Trans. Power Syst.
,
20
(
3
), pp.
1496
1503
.
28.
Li
,
H.
,
Chen
,
Z.
, and
Han
,
L.
,
2006
, “
Comparison and Evaluation of Induction Generator Models in Wind Turbine Systems for Transient Stability of Power System
,” International Conference on Power System Technology (
PowerCon
), Chongqing, China, Oct. 22–26, pp.
1
6
.
29.
Hau
,
E.
,
2006
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
,
2nd
ed.,
Springer
,
New York.
30.
Christensen
,
R. M.
,
2013
,
The Theory of Materials Failure
,
Oxford University Press
,
Oxford, UK
.
31.
Wang
,
L.
,
Liu
,
X.
,
Renevier
,
N.
,
Stables
,
M.
, and
Hall
,
G. M.
,
2014
, “
Nonlinear Aeroelastic Modelling for Wind Turbine Blades Based on Blade Element Momentum Theory and Geometrically Exact Beam Theory
,”
Energy
,
76
, pp.
487
501
.
32.
Muljadi
,
E.
,
Singh
,
M.
, and
Gevorgian
,
V.
,
2013
, “
Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid
,” U.S. Department of Energy, National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/CP-5500-56817
.http://www.nrel.gov/docs/fy13osti/56817.pdf
33.
Dykes
,
K.
,
Resor
,
B.
,
Platt
,
A.
,
Guo
,
Y.
,
Ning
,
A.
,
King
,
R.
, Petch, D., Veers, P., and Parsons, T.,
2014
, “
Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-5000-61726
.http://www.nrel.gov/docs/fy15osti/61726.pdf
34.
Ma
,
Z.
,
Yan
,
Z.
,
Shaltout
,
M. L.
, and
Chen
,
D.
,
2015
, “
Optimal Real-Time Control of Wind Turbine During Partial Load Operation
,”
IEEE Trans. Control Syst. Technol.
,
23
(
6
), pp.
2216
2226
.
35.
Bertsekas
,
D. P.
,
1995
,
Dynamic Programming and Optimal Control
, Vol.
1
,
Athena Scientific
,
Belmont, MA
.
36.
Birge
,
J. R.
, and
Louveaux
,
F.
,
2011
,
Introduction to Stochastic Programming
,
Springer Science and Business Media
, New York.
37.
Deb
,
K.
,
Sindhya
,
K.
, and
Hakanen
,
J.
,
2016
, “
Multi-Objective Optimization
,”
Decision Sciences
,
CRC Press
, Boca Raton, FL, pp.
145
184
.
38.
Belegundu
,
A. D.
, and
Chandrupatla
,
T. R.
,
2011
,
Optimization Concepts and Applications in Engineering
,
Cambridge University Press
,
New York.
39.
Manwell
,
J.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
2nd ed.
,
Wiley
,
Chichester, UK
.
40.
Justus
,
C.
,
1978
,
Winds and Wind System Performance
,
Franklin Institute Press
,
Philadelphia, PA
.
41.
Rardin
,
R. L.
,
1998
,
Optimization in Operations Research
, Vol.
166
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.