The stiffness of plate structures can be significantly improved by adding reinforcing ribs. In this paper, we are concerned with the stiffening of panels using ribs made of constant-thickness plates. These ribs are common in, for example, the reinforcement of ship hulls, aircraft wings, pressure vessels, and storage tanks. Here, we present a method for optimally designing the locations and dimensions of rectangular ribs to reinforce a panel. The work presented here is an extension to our previous work to design structures made solely of discrete plate elements. The most important feature of our method is that the explicit geometry representation provides a direct translation to a computer-aided design (CAD) model, thereby producing reinforcement designs that conform to available plate cutting and joining processes. The main contributions of this paper are the introduction of two important design and manufacturing constraints for the optimal rib layout problem. One is a constraint on the minimum separation between any two ribs to guarantee adequate weld gun access. The other is a constraint that guarantees that ribs do not interfere with holes in the panel. These holes may be needed to, for example, route components or provide access, such as a manhole. We present numerical examples of our method under different types of loadings to demonstrate its applicability.

References

References
1.
Cheng
,
K.-T.
, and
Olhoff
,
N.
,
1981
, “
An Investigation Concerning Optimal Design of Solid Elastic Plates
,”
Int. J. Solids Struct.
,
17
(
3
), pp.
305
323
.
2.
Zhou
,
M.
,
Fleury
,
R.
,
Shyy
,
Y.-K.
,
Thomas
,
H.
, and
Brennan
,
J.
,
2002
, “
Progress in Topology Optimization With Manufacturing Constraints
,”
AIAA
Paper No. 2002-4901.
3.
Liu
,
S.
,
Li
,
Q.
,
Chen
,
W.
,
Hu
,
R.
, and
Tong
,
L.
,
2015
, “
H-DGTP—A Heaviside-Function Based Directional Growth Topology Parameterization for Design Optimization of Stiffener Layout and Height of Thin-Walled Structures
,”
Struct. Multidiscip. Optim.
,
52
(
5
), pp.
903
913
.
4.
Thomas
,
H.
,
Zhou
,
M.
, and
Schramm
,
U.
,
2002
, “
Issues of Commercial Optimization Software Development
,”
Struct. Multidiscip. Optim.
,
23
(
2
), pp.
97
110
.
5.
Chung
,
J.
, and
Lee
,
K.
,
1997
, “
Optimal Design of Rib Structures Using the Topology Optimization Technique
,”
Proc. Inst. Mech. Eng., Part C
,
211
(
6
), pp.
425
437
.
6.
Lam
,
Y.
, and
Santhikumar
,
S.
,
2003
, “
Automated Rib Location and Optimization for Plate Structures
,”
Struct. Multidiscip. Optim.
,
25
(
1
), pp.
35
45
.
7.
Dugré
,
A.
,
Vadean
,
A.
, and
Chaussée
,
J.
,
2016
, “
Challenges of Using Topology Optimization for the Design of Pressurized Stiffened Panels
,”
Struct. Multidiscip. Optim.
,
53
(
2
), pp.
303
320
.
8.
Ding
,
X.
, and
Yamazaki
,
K.
,
2004
, “
Stiffener Layout Design for Plate Structures by Growing and Branching Tree Model (Application to Vibration-Proof Design)
,”
Struct. Multidiscip. Optim.
,
26
(
1–2
), pp.
99
110
.
9.
Bojczuk
,
D.
, and
Szteleblak
,
W.
,
2008
, “
Optimization of Layout and Shape of Stiffeners in 2D Structures
,”
Comput. Struct.
,
86
(
13
), pp.
1436
1446
.
10.
Chen
,
J.
,
Shapiro
,
V.
,
Suresh
,
K.
, and
Tsukanov
,
I.
,
2007
, “
Shape Optimization With Topological Changes and Parametric Control
,”
Int. J. Numer. Methods Eng.
,
71
(
3
), pp.
313
346
.
11.
Qian
,
Z.
, and
Ananthasuresh
,
G.
,
2004
, “
Optimal Embedding of Rigid Objects in the Topology Design of Structures
,”
Mech. Based Des. Struct. Mach.
,
32
(
2
), pp.
165
193
.
12.
Xia
,
L.
,
Zhu
,
J.
, and
Zhang
,
W.
,
2012
, “
Sensitivity Analysis With the Modified Heaviside Function for the Optimal Layout Design of Multi-Component Systems
,”
Comput. Methods Appl. Mech. Eng.
,
241–244
, pp.
142
154
.
13.
Zhang
,
W.
,
Xia
,
L.
,
Zhu
,
J.
, and
Zhang
,
Q.
,
2011
, “
Some Recent Advances in the Integrated Layout Design of Multicomponent Systems
,”
ASME J. Mech. Des.
,
133
(
10
), p.
104503
.
14.
Zhang
,
W.
,
Zhong
,
W.
, and
Guo
,
X.
,
2015
, “
Explicit Layout Control in Optimal Design of Structural Systems With Multiple Embedding Components
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
290
313
.
15.
Zhou
,
M.
, and
Wang
,
M. Y.
,
2013
, “
Engineering Feature Design for Level Set Based Structural Optimization
,”
Comput. Aided Des.
,
45
(
12
), pp.
1524
1537
.
16.
Zhu
,
J.
,
Zhang
,
W.
,
Beckers
,
P.
,
Chen
,
Y.
, and
Guo
,
Z.
,
2008
, “
Simultaneous Design of Components Layout and Supporting Structures Using Coupled Shape and Topology Optimization Technique
,”
Struct. Multidiscip. Optim.
,
36
(
1
), pp.
29
41
.
17.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
,
1994
, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Optim.
,
8
(
1
), pp.
42
51
.
18.
Cheng
,
G.
,
Mei
,
Y.
, and
Wang
,
X.
,
2006
, “
A Feature-Based Structural Topology Optimization Method
,”
IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials
, Springer, Dordrecht, The Netherlands, pp.
505
514
.
19.
Chen
,
S.
,
Wang
,
M. Y.
, and
Liu
,
A. Q.
,
2008
, “
Shape Feature Control in Structural Topology Optimization
,”
Comput. Aided Des.
,
40
(
9
), pp.
951
962
.
20.
Seo
,
Y.-D.
,
Kim
,
H.-J.
, and
Youn
,
S.-K.
,
2010
, “
Isogeometric Topology Optimization Using Trimmed Spline Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
49
), pp.
3270
3296
.
21.
Saxena
,
A.
,
2011
, “
Are Circular Shaped Masks Adequate in Adaptive Mask Overlay Topology Synthesis Method?
,”
ASME J. Mech. Des.
,
133
(
1
), p.
011001
.
22.
Wang
,
F.
,
Jensen
,
J. S.
, and
Sigmund
,
O.
,
2012
, “
High-Performance Slow Light Photonic Crystal Waveguides With Topology Optimized or Circular-Hole Based Material Layouts
,”
Photonics Nanostruct. Fundam. Appl.
,
10
(
4
), pp.
378
388
.
23.
Bell
,
B.
,
Norato
,
J.
, and
Tortorelli
,
D.
,
2012
, “
A Geometry Projection Method for Continuum-Based Topology Optimization of Structures
,”
AIAA
Paper No. 2012-5485.
24.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
25.
Zhang
,
S.
,
Norato
,
J.
,
Gain
,
A.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1173
1190
.
26.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
27.
Deng
,
J.
, and
Chen
,
W.
,
2016
, “
Design for Structural Flexibility Using Connected Morphable Components Based Topology Optimization
,”
Sci. China Technol. Sci.
,
59
(
6
), pp.
839
851
.
28.
Stolpe
,
M.
, and
Svanberg
,
K.
,
2001
, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscip. Optim.
,
22
(
2
), pp.
116
124
.
29.
Kreisselmeier
,
G.
, and
Steinhauser, R.
,
1979
, “
Systematic Control Design by Optimizing a Vector Performance Index
,”
IFAC Symposium on Computer Aided Design of Control Systems
, Zurich, Switzerland, Aug. 29–31, pp. 113–117.
30.
Le
,
C.
,
Norato
,
J.
,
Bruns
,
T.
,
Ha
,
C.
, and
Tortorelli
,
D.
,
2010
, “
Stress-Based Topology Optimization for Continua
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
605
620
.
31.
Bangerth
,
W.
,
Heister
,
T.
,
Heltai
,
L.
,
Kanschat
,
G.
,
Kronbichler
,
M.
,
Maier
,
M.
,
Turcksin
,
B.
, and
Young
,
T. D.
,
2015
, “
The deal.II Library, Version 8.2
,”
Arch. Numer. Software
,
3
(100), pp. 1–8.
32.
Bangerth
,
W.
,
Hartmann
,
R.
, and
Kanschat
,
G.
,
2007
, “
deal.II—A General Purpose Object Oriented Finite Element Library
,”
ACM Trans. Math. Software
,
33
(
4
), pp.
24/1
24/27
.
33.
Balay
,
S.
,
Gropp
,
W. D.
,
McInnes
,
L. C.
, and
Smith
,
B. F.
,
1997
, “
Efficient Management of Parallelism in Object Oriented Numerical Software Libraries
,”
Modern Software Tools in Scientific Computing
,
E.
Arge
,
A. M.
Bruaset
, and
H. P.
Langtangen
, eds.,
Birkhäuser Press
, Boston, MA, pp.
163
202
.
34.
Balay
,
S.
,
Abhyankar
,
S.
,
Adams
,
M. F.
,
Brown
,
J.
,
Brune
,
P.
,
Buschelman
,
K.
,
Dalcin
,
L.
,
Eijkhout
,
V.
,
Gropp
,
W. D.
,
Kaushik
,
D.
,
Knepley
,
M. G.
,
McInnes
,
L. C.
,
Rupp
,
K.
,
Smith
,
B. F.
,
Zampini
,
S.
, and
Zhang
,
H.
,
2015
, “
PETSc Users Manual
,” Argonne National Laboratory, Lemont, IL, Technical Report No. ANL-95/11—Rev 3.6.
35.
Balay
,
S.
,
Abhyankar
,
S.
,
Adams
,
M. F.
,
Brown
,
J.
,
Brune
,
P.
,
Buschelman
,
K.
,
Dalcin
,
L.
,
Eijkhout
,
V.
,
Gropp
,
W. D.
,
Kaushik
,
D.
,
Knepley
,
M. G.
,
McInnes
,
L. C.
,
Rupp
,
K.
,
Smith
,
B. F.
,
Zampini
,
S.
, and
Zhang
,
H.
,
2015
, “
Portable, Extensible Toolkit for Scientific Computation
,” Argonne National Laboratory, Lemont, IL, accessed Jan. 20, 2016, http://www.mcs.anl.gov/petsc
36.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
37.
Svanberg
,
K.
,
2002
, “
A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations
,”
SIAM J. Optim.
,
12
(
2
), pp.
555
573
.
38.
Altair Engineering
,
2016
, “
Altair Optistruct: User Guide
,” Altair Engineering, Inc., Troy, MI.
39.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science and Business Media
, Berlin.
You do not currently have access to this content.