The center shift, a common problem existing in rotating flexural pivots, is diminished in a multibeam flexural pivot by the internal interaction among these beams. The objectives of this paper are to develop a model for this flexural pivot and to analyze the interaction. First, the calculus of variations with a Lagrange multiplier is exploited to develop the model based on energy approach. Then, the properties of a conservative system are utilized to analyze the constraint characteristics of these beams, and two different load sequences are taken into account to formulate the rotating stiffness of the flexural pivot. The three methods that are used to develop the same model are compared to show their respective advantages, and the analysis of the internal constraints offers several significant qualitative and quantitative design insights. Furthermore, the circular arc motion is expanded to the elliptic arc motion, and an approximate replacement is therefore presented. Furthermore, the circular arc motion is expanded to the elliptic arc motion, and an approximate replacement is therefore presented.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science Publishers
,
New York
.
3.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
4.
Li
,
J. P.
,
Zhao
,
H. W.
,
Qu
,
H.
,
Cui
,
T.
,
Fu
,
L.
,
Huang
,
H.
,
Ren
,
L. Q.
, and
Fan
,
Z. Q.
,
2013
, “
A Piezoelectric-Driven Rotary Actuator by Means of Inchworm Motion
,”
Sens. Actuators, A
,
194
, pp.
269
276
.
5.
Trease
,
B.
,
Moon
,
Y.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
7
), pp.
788
798
.
6.
Xu
,
Q.
,
2016
,
Design and Implementation of Large-Range Compliant Micropositioning Systems
,
Wiley
,
Hoboken, NJ
.
7.
Wittrick
,
W. H.
,
1951
, “
The Properties of Crossed Flexural Pivots, and the Influence of the Point at Which the Strips Cross
,”
Aeronaut. Q.
,
2
(4), pp.
272
292
.
8.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2002
, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Theory
,
37
(
5
), pp.
461
476
.
9.
Zhao
,
H. Z.
, and
Bi
,
S. S.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
.
10.
Henein
,
S.
,
Spanoudakis
,
P.
,
Droz
,
S.
,
Myklebust
,
L. I.
, and
Onillon
,
E.
,
2003
, “
Flexure Pivot for Aerospace Mechanisms
,”
Tenth European Space Mechanisms and Tribology Symposium
(ESMATS), San Sebastián, Spain, Sept. 24–26, Paper No.
ESA SP-524
.
11.
Xu
,
Q.
,
2015
, “
Design of a Large-Range Compliant Rotary Micropositioning Stage With Angle and Torque Sensing
,”
IEEE Sens. J.
,
15
(
4
), pp.
2419
2430
.
12.
Xu
,
Q.
,
2013
, “
Design and Implementation of a Novel Rotary Micropositioning System Driven by Linear Voice Coil Motor
,”
Rev. Sci. Instrum.
,
84
(
5
), p.
055001
.
13.
Xu
,
Q. S.
,
2015
, “
Design, Fabrication, and Testing of an MEMS Microgripper With Dual-Axis Force Sensor
,”
IEEE Sens. J.
,
15
(
10
), pp.
6017
6026
.
14.
Fowler
,
R. M.
,
Maselli
,
A.
,
Pluimers
,
P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Flex-16: A Large-Displacement Monolithic Compliant Rotational Hinge
,”
Mech. Mach. Theory
,
82
, pp.
203
217
.
15.
Henein
,
S.
,
2012
, “
Short Communication: Flexure Delicacies
,”
Mech. Sci.
,
3
(
1
), pp.
1
4
.
16.
Calvet
,
R. J.
,
2000
, “
Rotary Flexure
,” U.S. Patent No.
6146044
.
17.
Bi
,
S.
,
Zhao
,
S.
, and
Zhu
,
X.
,
2010
, “
Dimensionless Design Graphs for Three Types of Annulus-Shaped Flexure Hinges
,”
Precis. Eng.
,
34
(3), pp. 659–666.
18.
Zhao
,
H. Z.
, and
Bi
,
S. S.
,
2010
, “
Stiffness and Stress Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
3
), pp.
378
391
.
19.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
You do not currently have access to this content.