This paper presents a novel family of modular flat-foldable rigid plate structures composed by assemblies of 4R-linkages. First, in the field of foldable plates, the proposed system is characterized by being not only foldable but also transformable: the slope of one module over the other is capable of changing not only magnitude but also sign. This transformable behavior extends the range of application of foldable plates from simply larger–smaller configurations to substantially different configurations and usages. The transformable curve is obtained by means of symmetry operations on the spherical length of links. For each module, three configurations can be designed. Various examples are illustrated.

References

References
1.
Chen
,
Y.
,
Feng
,
J.
, and
Fan
,
L.
,
2013
, “
Mobility and Kinematic Simulations of Cyclically Symmetric Deployable Truss Structures
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
10
), pp.
2218
2227
.
2.
Mitani
,
J.
,
2009
, “
A Design Method for 3D Origami Based on Rotational Sweep
,”
Comput.-Aided Des. Appl.
,
6
(
1
), pp.
69
79
.
3.
Kokotsakis
,
A.
,
1933
, “
Über Bewegliche Polyeder
,”
Math. Ann.
,
107
(
1
), pp.
627
647
.
4.
Izmestiev
,
I.
,
2017
, “
Classification of Flexible Kokotsakis Polyhedra With Quadrangular Base
,”
Int. Math. Res. Not.
,
2017
(3), pp.
715
808
.
5.
Stachel
,
H.
,
2010
, “
A Kinematic Approach to Kokotsakis Meshes
,”
Comput. Aided Geom. Des.
,
27
(
6
), pp.
428
437
.
6.
Xie
,
R.
,
Chen
,
Y.
, and
Gattas
,
J. M.
,
2015
, “
Parametrisation and Application of Cube and Eggbox-Type Folded Geometries
,”
Int. J. Space Struct.
,
30
(
2
), pp.
99
111
.
7.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci.
,
110
(
9
), pp.
3276
3281
.
8.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085001
.
9.
Watanabe
,
N.
, and
Kawaguchi
,
K.
,
2009
, “
The Method for Judging Rigid Foldability
,”
Fourth International Conference on Origami in Science, Mathematics, and Education
(
4OSME
), Pasadena, CA, Sept. 8–10.
10.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Fourth International Conference on Origami in Science, Mathematics, and Education
(
4OSME
), Pasadena, CA, Sept. 8–10.
11.
Tachi
,
T.
,
2009
, “
3D Origami Design Based on Tucking Molecule
,”
Fourth International Conference on Origami in Science, Mathematics, and Education
(
4OSME
), Pasadena, CA, Sept. 8–10.
12.
Yasuda
,
H.
,
Chen
,
Z.
, and
Yang
,
J.
,
2016
, “
Multitransformable Leaf-Out Origami With Bistable Behavior
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031013
.
13.
Resch, R. D.
,
1973
, “
The Topological Design of Sculptural and Architectural Systems
,” National Computer Conference and Exposition (
AFIPS
), New York, June 4–8, pp. 643–650.
14.
Guest
,
S.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders—Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
15.
Evans
,
T. A.
,
Lang
,
R.
,
Magleby, S.P.
, and
Howell, L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
.
16.
Chiang
,
C. H.
,
1988
,
Kinematics of Spherical Mechanisms
,
Cambridge University Press
,
Cambridge, UK
.
17.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
18.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
.
19.
Barreto
,
P. T.
,
1997
, “
Lines Meeting on a Surface: The Mars Paperfolding
,”
Origami Science and Art: Second International Meeting of Origami Science and Scientific Origami
, OSME, Otsu, Japan, Nov. 29–Dec. 2, pp. 343–359.
20.
Beatini
,
V.
,
2015
, “
Polar Method to Design Foldable Plate Structures
,”
J. IASS
,
56
(
2
), pp.
125
136
.
21.
Gioia
,
F.
,
Dureisseix
,
D.
,
Motro
,
R.
, and
Maurin
,
B.
,
2012
, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031003
.
22.
Gattas
,
J. M.
,
Wu
,
W.
, and
You
,
Z.
,
2015
, “
Miura-Base Rigid Origami. Parameterizations of First-Level Derivative and Piecewise Geometries
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111011
.
23.
Beatini
,
V.
,
2015
, “
Translational Method for Designing Folded Plate Structures
,”
Int. J. Space Struct.
,
30
(
2
), pp.
85
99
.
24.
Zhang
,
Y.
,
Gao
,
W.
,
Paredes
,
L.
, and
Ramani
,
K.
,
2016
, “
CardBoardiZer. Creatively Customize, Articulate and Fold 3D Mesh Models
,”
Conference on Human Factors in Computing Systems
(
CHI
), Santa Clara, CA, May 7–12, pp.
897
907
.
25.
Hoberman
,
C.
,
1991
, “
Reversibly Expandable Structures
,” U.S. Patent No.
4981732 A
.
26.
Beatini
,
V.
, and
Korkmaz
,
K.
,
2014
, “
Shapes of Miura Mesh Mechanism With Mobility One
,”
Int. J. Space Struct.
,
28
(
2
), pp.
101
115
.
27.
Chen
,
Y.
,
Feng
,
J.
, and
Liu
,
Y.
,
2016
, “
A Group-Theoretic Approach to the Mobility and Kinematic of Symmetric Over-Constrained Structures
,”
Mech. Mach. Theory
,
105
, pp.
91
107
.
28.
Pellegrino
,
S.
, and
Calladine
,
C. R.
,
1986
, “
Matrix Analysis of Statically and Kinematically Indeterminate Frameworks
,”
Int. J. Solids Struct.
,
22
(
4
), pp.
409
428
.
29.
Chen
,
Y.
, and
Feng
,
J.
,
2015
, “
Mobility of Symmetric Deployable Structures Subjected to External Loads
,”
Mech. Mach. Theory
,
93
, pp.
98
111
.
30.
Gao
,
W.
,
Ramani
,
K.
,
Cipra
,
R. J.
, and
Siegmund
,
T.
,
2013
, “
Kinetogami: A Reconfigurable and Printable Sheet Folding
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111009
.
31.
Kiper
,
G.
, and
Söylemez
,
E.
,
2013
, “
Polyhedral Linkages Obtained as Assemblies of Planar Link Groups
,”
Front. Mech. Eng.
,
8
(
1
), pp.
3
9
.
You do not currently have access to this content.