Multicell tubal structures have generated increasing interest in engineering design for their excellent energy-absorbing characteristics when crushed through severe plastic deformation. To make more efficient use of the material, topology optimization was introduced to design multicell tubes under normal crushing. The design problem was formulated to maximize the energy absorption while constraining the structural mass. In this research, the presence or absence of inner walls were taken as design variables. To deal with such a highly nonlinear problem, a heuristic design methodology was proposed based on a modified artificial bee colony (ABC) algorithm, in which a constraint-driven mechanism was introduced to determine adjacent food sources for scout bees and neighborhood sources for employed and onlooker bees. The fitness function was customized according to the violation or the satisfaction of the constraints. This modified ABC algorithm was first verified by a square tube with seven design variables and then applied to four other examples with more design variables. The results demonstrated that the proposed heuristic algorithm is capable of handling the topology optimization of multicell tubes under out-of-plane crushing. They also confirmed that the optimized topological designs tend to allocate the material at the corners and around the outer walls. Moreover, the modified ABC algorithm was found to perform better than a genetic algorithm (GA) and traditional ABC in terms of best, worst, and average designs and the probability of obtaining the true optimal topological configuration.

References

References
1.
Alexander
,
J. M.
,
1960
, “
An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Loading
,”
Q. J. Mech. Appl. Math.
,
13
(
1
), pp.
10
15
.
2.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
ASME J. Appl. Mech.
,
50
(
4A
), pp.
727
734
.
3.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Square Tubes
,”
Int. J. Impact Eng.
,
2
(
2
), pp.
179
208
.
4.
Abramowicz
,
W.
, and
Jones
,
N.
,
1986
, “
Dynamic Progressive Buckling of Circular and Square Tubes
,”
Int. J. Impact Eng.
,
4
(
4
), pp.
243
270
.
5.
Meng
,
Q.
,
Al-Hassani
,
S. T. S.
, and
Soden
,
P. D.
,
1983
, “
Axial Crushing of Square Tubes
,”
Int. J. Mech. Sci.
,
25
(
9–10
), pp.
747
773
.
6.
Andrews
,
K. R. F.
,
England
,
G. L.
, and
Ghani
,
E.
,
1983
, “
Classification of the Axial Collapse of Cylindrical Tubes Under Quasi-Static Loading
,”
Int. J. Mech. Sci.
,
25
(
9–10
), pp.
687
696
.
7.
Mamalis
,
A. G.
, and
Johnson
,
W.
,
1983
, “
The Quasi-Static Crumpling of Thin-Walled Circular Cylinders and Frusta Under Axial Compression
,”
Int. J. Mech. Sci.
,
25
(
9–10
), pp.
713
732
.
8.
Abramowicz
,
W.
, and
Wierzbicki
,
T.
,
1989
, “
Axial Crushing of Multicorner Sheet Metal Columns
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
113
120
.
9.
Kim
,
H.-S.
,
2002
, “
New Extruded Multi-Cell Aluminum Profile for Maximum Crash Energy Absorption and Weight Efficiency
,”
Thin-Walled Struct.
,
40
(
4
), pp.
311
327
.
10.
Tang
,
Z.
,
Liu
,
S.
, and
Zhang
,
Z.
,
2013
, “
Analysis of Energy Absorption Characteristics of Cylindrical Multi-Cell Columns
,”
Thin-Walled Struct.
,
62
, pp.
75
84
.
11.
Zhang
,
X.
, and
Zhang
,
H.
,
2013
, “
Energy Absorption of Multi-Cell Stub Columns Under Axial Compression
,”
Thin-Walled Struct.
,
68
, pp.
156
163
.
12.
Hou
,
S. J.
,
Li
,
Q.
,
Long
,
S. Y.
,
Yang
,
X. J.
, and
Li
,
W.
,
2008
, “
Multiobjective Optimization of Multi-Cell Sections for the Crashworthiness Design
,”
Int. J. Impact Eng.
,
35
(
11
), pp.
1355
1367
.
13.
Fang
,
J.
,
Gao
,
Y.
,
Sun
,
G.
,
Qiu
,
N.
, and
Li
,
Q.
,
2015
, “
On Design of Multi-Cell Tubes Under Axial and Oblique Impact Loads
,”
Thin-Walled Struct.
,
95
, pp.
115
126
.
14.
Qiu
,
N.
,
Gao
,
Y.
,
Fang
,
J.
,
Feng
,
Z.
,
Sun
,
G.
, and
Li
,
Q.
,
2015
, “
Crashworthiness Analysis and Design of Multi-Cell Hexagonal Columns Under Multiple Loading Cases
,”
Finite Elem. Anal. Des.
,
104
, pp.
89
101
.
15.
Fang
,
J.
,
Gao
,
Y.
,
Sun
,
G.
,
Zheng
,
G.
, and
Li
,
Q.
,
2015
, “
Dynamic Crashing Behavior of New Extrudable Multi-Cell Tubes With a Functionally Graded Thickness
,”
Int. J. Mech. Sci.
,
103
, pp.
63
73
.
16.
Davis
,
S. C.
,
Diegel
,
S. W.
, and
Boundy
,
R. G.
,
2013
, “
Transportation Energy Data Book
,” Oak Ridge National Laboratory, Oak Ridge, TN.
17.
Zhang
,
Y.
,
Zhu
,
P.
,
Chen
,
G.
, and
Lin
,
Z.
,
2007
, “
Study on Structural Lightweight Design of Automotive Front Side Rail Based on Response Surface Method
,”
ASME J. Mech. Des.
,
129
(
5
), pp.
553
557
.
18.
Mayer
,
R. R.
,
Kikuchi
,
N.
, and
Scott
,
R. A.
,
1996
, “
Application of Topological Optimization Techniques to Structural Crashworthiness
,”
Int. J. Numer. Methods Eng.
,
39
(
8
), pp.
1383
1403
.
19.
Pedersen
,
C. B. W.
,
2003
, “
Topology Optimization Design of Crushed 2D-Frames for Desired Energy Absorption History
,”
Struct. Multidiscip. Optim.
,
25
(
5
), pp.
368
382
.
20.
Soto
,
C. A.
,
2004
, “
Structural Topology Optimization for Crashworthiness
,”
Int. J. Crashworthiness
,
9
(
3
), pp.
277
283
.
21.
Forsberg
,
J.
, and
Nilsson
,
L.
,
2007
, “
Topology Optimization in Crashworthiness Design
,”
Struct. Multidiscip. Optim.
,
33
(
1
), pp.
1
12
.
22.
Huang
,
X.
,
Xie
,
Y. M.
, and
Lu
,
G.
,
2007
, “
Topology Optimization of Energy-Absorbing Structures
,”
Int. J. Crashworthiness
,
12
(
6
), pp.
663
675
.
23.
Patel
,
N. M.
,
Kang
,
B.-S.
,
Renaud
,
J. E.
, and
Tovar
,
A.
,
2009
, “
Crashworthiness Design Using Topology Optimization
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061013
.
24.
Fang
,
J.
,
Sun
,
G.
,
Qiu
,
N.
,
Kim
,
N. H.
, and
Li
,
Q.
,
2017
, “
On Design Optimization for Structural Crashworthiness and Its State of the Art
,”
Struct. Multidiscip. Optim.
,
55
(
3
), pp.
1091
1119
.
25.
Karaboga
,
D.
, and
Basturk
,
B.
,
2007
, “
A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm
,”
J. Global Optim.
,
39
(
3
), pp.
459
471
.
26.
Karaboga
,
D.
, and
Basturk
,
B.
,
2008
, “
On the Performance of Artificial Bee Colony (ABC) Algorithm
,”
Appl. Soft Comput.
,
8
(
1
), pp.
687
697
.
27.
Fang
,
J.
,
Gao
,
Y.
,
Sun
,
G.
,
Xu
,
C.
,
Zhang
,
Y.
, and
Li
,
Q.
,
2014
, “
Optimization of Spot-Welded Joints Combined Artificial Bee Colony Algorithm With Sequential Kriging Optimization
,”
Adv. Mech. Eng.
,
6
, p.
573694
.
28.
Sun
,
G.
,
Li
,
G.
, and
Li
,
Q.
,
2012
, “
Variable Fidelity Design Based Surrogate and Artificial Bee Colony Algorithm for Sheet Metal Forming Process
,”
Finite Elem. Anal. Des.
,
59
, pp.
76
90
.
29.
Karaboga
,
D.
,
Gorkemli
,
B.
,
Ozturk
,
C.
, and
Karaboga
,
N.
,
2014
, “
A Comprehensive Survey: Artificial Bee Colony (ABC) Algorithm and Applications
,”
Artif. Intell. Rev.
,
42
(
1
), pp.
21
57
.
30.
Sonmez
,
M.
,
2011
, “
Discrete Optimum Design of Truss Structures Using Artificial Bee Colony Algorithm
,”
Struct. Multidiscip. Optim.
,
43
(
1
), pp.
85
97
.
31.
Duan
,
L.
,
Sun
,
G.
,
Cui
,
J.
,
Chen
,
T.
,
Cheng
,
A.
, and
Li
,
G.
,
2016
, “
Crashworthiness Design of Vehicle Structure With Tailor Rolled Blank
,”
Struct. Multidiscip. Optim.
,
53
(
2
), pp.
321
338
.
32.
Hallquist
,
J. O.
,
2006
, “
LS-DYNA Theory Manual
,” Livermore Software Technology Corporation, Livermore, CA.
33.
Belytschko
,
T.
,
Lin
,
J. I.
, and
Chen-Shyh
,
T.
,
1984
, “
Explicit Algorithms for the Nonlinear Dynamics of Shells
,”
Comput. Methods Appl. Mech. Eng.
,
42
(
2
), pp.
225
251
.
34.
Fang
,
J.
,
Gao
,
Y.
,
Sun
,
G.
,
Zhang
,
Y.
, and
Li
,
Q.
,
2014
, “
Parametric Analysis and Multiobjective Optimization for Functionally Graded Foam-Filled Thin-Wall Tube Under Lateral Impact
,”
Comput. Mater. Sci.
,
90
, pp.
265
275
.
35.
Santosa
,
S. P.
,
Wierzbicki
,
T.
,
Hanssen
,
A. G.
, and
Langseth
,
M.
,
2000
, “
Experimental and Numerical Studies of Foam-Filled Sections
,”
Int. J. Impact Eng.
,
24
(
5
), pp.
509
534
.
36.
Fenton
,
J.
, and
Hodkinson
,
R.
,
2001
,
Lightweight Electric/Hybrid Vehicle Design
,
Butterworth/Heinemann
,
Oxford, UK
.
37.
Golberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison Wesley
,
Boston, MA
.
38.
Chandrasekaran
,
K.
,
Hemamalini
,
S.
,
Simon
,
S. P.
, and
Padhy
,
N. P.
,
2012
, “
Thermal Unit Commitment Using Binary/Real Coded Artificial Bee Colony Algorithm
,”
Electr. Power Syst. Res.
,
84
(
1
), pp.
109
119
.
39.
Wu
,
S.
,
Zheng
,
G.
,
Sun
,
G.
,
Liu
,
Q.
,
Li
,
G.
, and
Li
,
Q.
,
2016
, “
On Design of Multi-Cell Thin-Wall Structures for Crashworthiness
,”
Int. J. Impact Eng.
,
88
, pp.
102
117
.
40.
Karagiozova
,
D.
, and
Alves
,
M.
,
2004
, “
Transition From Progressive Buckling to Global Bending of Circular Shells Under Axial Impact—Part I: Experimental and Numerical Observations
,”
Int. J. Solids Struct.
,
41
(
5–6
), pp.
1565
1580
.
41.
Karagiozova
,
D.
, and
Alves
,
M..
,
2004
, “
Transition From Progressive Buckling to Global Bending of Circular Shells Under Axial Impact—Part II: Theoretical Analysis
,”
Int. J. Solids Struct.
,
41
(
5–6
), pp.
1581
1604
.
42.
Abramowicz
,
W.
, and
Jones
,
N.
,
1997
, “
Transition From Initial Global Bending to Progressive Buckling of Tubes Loaded Statically and Dynamically
,”
Int. J. Impact Eng.
,
19
(
5–6
), pp.
415
437
.
You do not currently have access to this content.