This article provides an overview of the operational strategies adopted in microgrippers design. The review covers microgrippers recently proposed in Literature, some of which have been systematically presented in a companion paper, where their topological, kinematic, and structural characteristics are discussed. In the present contribution, the prevalent actuation methods and the operational aspects are discussed: the tip displacement, the tip force, the actuation voltage, and the amplification factor are the reference parameters that are adopted to compare the different types of actuation and operational strategies. In addition, the control strategies and control algorithms currently adopted are reviewed.

References

References
1.
Agnus
,
J.
,
Nectoux
,
P.
, and
Chaillet
,
N.
,
2005
, “
Overview of Microgrippers and Design of a Micro Manipulation Station Based on a MMOC Microgripper
,”
IEEE International Symposium on Computational Intelligence in Robotics and Automation
(
CIRA
), Espoo, Finland, June 27–30, pp.
117
123
.
2.
Carrozza
,
M. C.
,
Eisinberg
,
A.
,
Menciassi
,
A.
,
Campolo
,
D.
,
Micera
,
S.
, and
Dario
,
P.
,
2000
, “
Towards a Force-Controlled Microgripper for Assembling Biomedical Microdevices
,”
J. Micromech. Microeng.
,
10
(
2
), p.
271
.
3.
Kim
,
D.-H.
,
Kim
,
B.
, and
Kang
,
H.
,
2004
, “
Development of a Piezoelectric Polymer-Based Sensorized Microgripper for Microassembly and Micromanipulation
,”
Microsyst. Technol.
,
10
(
4
), pp.
275
280
.
4.
Wierzbicki
,
R.
,
Houston
,
K.
,
Heerlein
,
H.
,
Barth
,
W.
,
Debski
,
T.
,
Eisinberg
,
A.
,
Menciassi
,
A.
,
Carrozza
,
M.
, and
Dario
,
P.
,
2006
, “
Design and Fabrication of an Electrostatically Driven Microgripper for Blood Vessel Manipulation
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
1651
1654
.
5.
Solano
,
B.
, and
Wood
,
D.
,
2007
, “
Design and Testing of a Polymeric Microgripper for Cell Manipulation
,”
Microelectron. Eng.
,
84
(
5–8
), pp.
1219
1222
.
6.
Yamahata
,
C.
,
Collard
,
D.
,
Legrand
,
B.
,
Takekawa
,
T.
,
Kumemura
,
M.
,
Hashiguchi
,
G.
, and
Fujita
,
H.
,
2008
, “
Silicon Nanotweezers With Subnanometer Resolution for the Micromanipulation of Biomolecules
,”
J. Microelectromech. Syst.
,
17
(
3
), pp.
623
631
.
7.
Zubir
,
M. N. M.
,
Shirinzadeh
,
B.
, and
Tian
,
Y.
,
2009
, “
A New Design of Piezoelectric Driven Compliant-Based Microgripper for Micromanipulation
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2248
2264
.
8.
Zhang
,
R.
,
Chu
,
J.
,
Wang
,
H.
, and
Chen
,
Z.
,
2013
, “
A Multipurpose Electrothermal Microgripper for Biological Micro-Manipulation
,”
Microsyst. Technol.
,
19
(
1
), pp.
89
97
.
9.
Verotti
,
M.
,
Dochshanov
,
A.
, and
Belfiore
,
N. P.
,
2016
, “
A Comprehensive Survey on Microgrippers Design: Mechanical Structure
,”
ASME J. Mech. Des.
(accepted).
10.
Thielicke
,
E.
, and
Obermeier
,
E.
,
2000
, “
Microactuators and Their Technologies
,”
Mechatronics
,
10
(
4–5
), pp.
431
455
.
11.
Bell
,
D. J.
,
Lu
,
T. J.
,
Fleck
,
N. A.
, and
Spearing
,
S. M.
,
2005
, “
MEMS Actuators and Sensors: Observations on Their Performance and Selection for Purpose
,”
J. Micromech. Microeng.
,
15
(
7
), p.
S153
.
12.
Fleming
,
A. J.
,
2013
, “
A Review of Nanometer Resolution Position Sensors: Operation and Performance
,”
Sens. Actuators, A
,
190
, pp.
106
126
.
13.
Wei
,
Y.
, and
Xu
,
Q.
,
2015
, “
An Overview of Micro-Force Sensing Techniques
,”
Sens. Actuators, A
,
234
, pp.
359
374
.
14.
Boudaoud
,
M.
, and
Regnier
,
S.
,
2014
, “
An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems
,”
Int. J. Adv. Rob. Syst.
,
11
(
3
), p.
45
.
15.
Desmaële
,
D.
,
Boukallel
,
M.
, and
Régniér
,
S.
,
2011
, “
Actuation Means for the Mechanical Stimulation of Living Cells Via Microelectromechanical Systems: A Critical Review
,”
J. Biomech.
,
44
(
8
), pp.
1433
1446
.
16.
Cullinan
,
M. A.
,
Panas
,
R. M.
,
DiBiasio
,
C. M.
, and
Culpepper
,
M. L.
,
2012
, “
Scaling Electromechanical Sensors Down to the Nanoscale
,”
Sens. Actuators, A
,
187
, pp.
162
173
.
17.
Hubbard
,
N. B.
,
Culpepper
,
M. L.
, and
Howell
,
L. L.
,
2006
, “
Actuators for Micropositioners and Nanopositioners
,”
ASME Appl. Mech. Rev.
,
59
(
6
), pp.
324
334
.
18.
Cecil
,
J.
,
Vasquez
,
D.
, and
Powell
,
D.
,
2005
, “
A Review of Gripping and Manipulation Techniques for Micro-Assembly Applications
,”
Int. J. Prod. Res.
,
43
(
4
), pp.
819
828
.
19.
Cecil
,
J.
,
Powell
,
D.
, and
Vasquez
,
D.
,
2007
, “
Assembly and Manipulation of Micro Devices—A State of the Art Survey
,”
Rob. Comput.-Integr. Manuf.
,
23
(
5
), pp.
580
588
.
20.
Fantoni
,
G.
, and
Porta
,
M.
,
2008
, “
A Critical Review of Releasing Strategies in Microparts Handling
,”
Micro-Assembly Technologies and Applications
(IFIP Advances in Information and Communication Technology), Vol.
260
,
S.
Ratchev
and
S.
Koelemeijer
, eds.,
Springer
,
Boston, MA
.
21.
Jia
,
Y.
, and
Xu
,
Q.
,
2013
, “
MEMS Microgripper Actuators and Sensors: The State-of-the-Art Survey
,”
Recent Pat. Mech. Eng.
,
6
(
2
), pp.
132
142
.
22.
Millet
,
O.
,
Bernardoni
,
P.
,
Régnier
,
S.
,
Bidaud
,
P.
,
Tsitsiris
,
E.
,
Collard
,
D.
, and
Buchaillot
,
L.
,
2004
, “
Electrostatic Actuated Micro Gripper Using an Amplification Mechanism
,”
Sens. Actuators, A
,
114
(
2–3
), pp.
371
378
.
23.
Shi
,
X.
,
Chen
,
W.
,
Zhang
,
J.
, and
Chen
,
W.
,
2013
, “
Design, Modeling, and Simulation of a 2-DOF Microgripper for Grasping and Rotating of Optical Fibers
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, Australia, July 9–12, pp.
1597
1602
.
24.
Kim
,
D.-H.
,
Lee
,
M. G.
,
Kim
,
B.
, and
Sun
,
Y.
,
2005
, “
A Superelastic Alloy Microgripper With Embedded Electromagnetic Actuators and Piezoelectric Force Sensors: A Numerical and Experimental Study
,”
Smart Mater. Struct.
,
14
(
6
), p.
1265
.
25.
Nah
,
S.
, and
Zhong
,
Z.
,
2007
, “
A Microgripper Using Piezoelectric Actuation for Micro-Object Manipulation
,”
Sens. Actuators, A
,
133
(
1
), pp.
218
224
.
26.
Lerch
,
P.
,
Slimane
,
C. K.
,
Romanowicz
,
B.
, and
Renaud
,
P.
,
1996
, “
Modelization and Characterization of Asymmetrical Thermal Micro-Actuators
,”
J. Micromech. Microeng.
,
6
(
1
), p.
134
.
27.
Roch
,
I.
,
Bidaud
,
P.
,
Collard
,
D.
, and
Buchaillot
,
L.
,
2003
, “
Fabrication and Characterization of an Su-8 Gripper Actuated by a Shape Memory Alloy Thin Film
,”
J. Micromech. Microeng.
,
13
(
2
), p.
330
.
28.
Luo
,
J.
,
Huang
,
R.
,
He
,
J.
,
Fu
,
Y.
,
Flewitt
,
A.
,
Spearing
,
S.
,
Fleck
,
N.
, and
Milne
,
W.
,
2006
, “
Modelling and Fabrication of Low Operation Temperature Microcages With a Polymer/Metal/DLC Trilayer Structure
,”
Sens. Actuators, A
,
132
(
1
), pp.
346
353
.
29.
Neagu
,
C.
,
Jansen
,
H.
,
Gardeniers
,
H.
, and
Elwenspoek
,
M.
,
2000
, “
The Electrolysis of Water: An Actuation Principle for MEMS With a Big Opportunity
,”
Mechatronics
,
10
(
4–5
), pp.
571
581
.
30.
Iamoni
,
S.
, and
Somà
,
A.
,
2014
, “
Design of an Electro-Thermally Actuated Cell Microgripper
,”
Microsyst. Technol.
,
20
(
4–5
), pp.
869
877
.
31.
Chen
,
T.
,
Chen
,
L.
,
Sun
,
L.
,
Wang
,
J.
, and
Li
,
X.
,
2008
,
A Sidewall Piezoresistive Force Sensor Used in a MEMS Gripper
(Lecture Notes in Computer Science: Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.
5315
,
Springer
,
New York
, pp.
207
216
.
32.
Ali
,
N.
,
Shakoor
,
R.
, and
Hassan
,
M.
,
2011
, “
Design, Modeling and Simulation of Electrothermally Actuated Microgripper With Integrated Capacitive Contact Sensor
,”
IEEE 14th International Multitopic Conference
(
INMIC
), Karachi, Pakistan, Dec. 22–24, pp.
201
206
.
33.
Fu
,
Y.
,
Luo
,
J.
,
Flewitt
,
A.
, and
Milne
,
W.
,
2012
, “
Smart Microgrippers for bioMEMS Applications
,”
MEMS for Biomedical Applications
(Woodhead Publishing Series in Biomaterials),
S.
Bhansali
and
A.
Vasudev
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
291
336
.
34.
Tsai
,
Y.-C.
,
Lei
,
S. H.
, and
Sudin
,
H.
,
2005
, “
Design and Analysis of Planar Compliant Microgripper Based on Kinematic Approach
,”
J. Micromech. Microeng.
,
15
(
1
), p.
143
.
35.
Judy
,
J. W.
,
2006
, “Microactuators,”
MEMS
,
J. G.
Korvink
and
O.
Paul
, eds.,
William Andrew Publishing
,
Norwich, NY
, pp.
751
803
.
36.
Smith
,
S. T.
, and
Seugling
,
R. M.
,
2006
, “
Sensor and Actuator Considerations for Precision, Small Machines
,”
Precis. Eng.
,
30
(
3
), pp.
245
264
.
37.
Hsu
,
T.
,
2008
,
MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering
,
Wiley
,
Hoboken, NJ
.
38.
Kuo
,
J.-C.
,
Huang
,
H.-W.
,
Tung
,
S.-W.
, and
Yang
,
Y.-J.
,
2014
, “
A Hydrogel-Based Intravascular Microgripper Manipulated Using Magnetic Fields
,”
Sens. Actuators, A
,
211
, pp.
121
130
.
39.
Piriyanont
,
B.
, and
Moheimani
,
S.
,
2013
, “
Design, Modeling, and Characterization of a MEMS Micro-Gripper With an Integrated Electrothermal Force Sensor
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, Australia, July 9–12, pp.
348
353
.
40.
Nguyen
,
N.-T.
,
Ho
,
S.-S.
, and
Low
,
C. L.-N.
,
2004
, “
A Polymeric Microgripper With Integrated Thermal Actuators
,”
J. Micromech. Microeng.
,
14
(
7
), p.
969
.
41.
Zhang
,
R.
,
Chu
,
J.
,
Guan
,
L.
,
Li
,
S.
, and
Min
,
J.
,
2014
, “
Microgripping Force Measuring Device Based on Su-8 Microcantilever Sensor
,”
J. Micro/Nanolithogr., MEMS, MOEMS
,
13
(
1
), p.
013007
.
42.
Nikoobin
,
A.
, and
Niaki
,
M. H.
,
2012
, “
Deriving and Analyzing the Effective Parameters in Microgrippers Performance
,”
Sci. Iran.
,
19
(
6
), pp.
1554
1563
.
43.
Li
,
L.
, and
Chew
,
Z.
,
2014
, “
Microactuators: Design and Technology
,”
Smart Sensors and MEMS
,
S.
Nihtianov
and
A.
Luque
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
305
348
.
44.
Ghosh
,
A.
, and
Corves
,
B.
,
2015
,
Micromechanisms
,
Springer India
,
New Delhi, India
, pp.
51
56
.
45.
Mita
,
M.
,
Arai
,
M.
,
Tensaka
,
S.
,
Kobayashi
,
D.
, and
Fujita
,
H.
,
2003
, “
A Micromachined Impact Microactuator Driven by Electrostatic Force
,”
J. Microelectromech. Syst.
,
12
(
1
), pp.
37
41
.
46.
Maroufi
,
M.
, and
Moheimani
,
S. O. R.
,
2013
, “
Design, Fabrication and Characterization of a High-Bandwidth 2DOF MEMS Nanopositioner
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, Australia, July 9–12, pp.
335
340
.
47.
Mehdizadeh
,
E.
,
Rostami
,
M.
,
Guo
,
X.
, and
Pourkamali
,
S.
,
2014
, “
Atomic Resolution Disk Resonant Force and Displacement Sensors for Measurements in Liquid
,”
IEEE Electron Device Lett.
,
35
(
8
), pp.
874
876
.
48.
Zhang
,
W.-M.
,
Meng
,
G.
, and
Chen
,
D.
,
2007
, “
Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices
,”
Sensors
,
7
(
5
), pp.
760
796
.
49.
Wierzbicki
,
R.
,
Adda
,
C.
, and
Hötzendorfer
,
H.
,
2007
, “
Electrostatic Silicon Microgripper With Low Voltage of Actuation
,”
International Symposium on Micro-Nano-Mechatronics and Human Science
(
MHS'07
), Nagoya, Japan, Nov. 11–14, pp.
344
349
.
50.
Yeh
,
J.
,
Jiang
,
S.-S.
, and
Lee
,
C.
,
2006
, “
MOEMS Variable Optical Attenuators Using Rotary Comb Drive Actuators
,”
IEEE Photonics Technol. Lett.
,
18
(
10
), pp.
1170
1172
.
51.
Bazaz
,
S.
,
Khan
,
F.
, and
Shakoor
,
R.
,
2011
, “
Design, Simulation and Testing of Electrostatic SOI MUMPs Based Microgripper Integrated With Capacitive Contact Sensor
,”
Sens. Actuators, A
,
167
(
1
), pp.
44
53
.
52.
Hamedi
,
M.
,
Salimi
,
P.
, and
Vismeh
,
M.
,
2012
, “
Simulation and Experimental Investigation of a Novel Electrostatic Microgripper System
,”
Microelectron. Eng.
,
98
, pp.
467
471
.
53.
Sahu
,
B.
,
Taylor
,
C. R.
, and
Leang
,
K. K.
,
2010
, “
Emerging Challenges of Microactuators for Nanoscale Positioning, Assembly, and Manipulation
,”
ASME J. Manuf. Sci. Eng.
,
132
(
3
), p.
030917
.
54.
Fraser
,
J.
,
Hubbard
,
T.
, and
Kujath
,
M.
,
2006
, “
Theoretical and Experimental Analysis of an Off-Chip Microgripper
,”
Can. J. Electr. Comput. Eng.
,
31
(
2
), pp.
77
84
.
55.
Volland
,
B.
,
Heerlein
,
H.
, and
Rangelow
,
I.
,
2002
, “
Electrostatically Driven Microgripper
,”
Microelectron. Eng.
,
61–62
, pp.
1015
1023
.
56.
Chen
,
T.
,
Sun
,
L.
,
Chen
,
L.
,
Rong
,
W.
, and
Li
,
X.
,
2010
, “
A Hybrid-Type Electrostatically Driven Microgripper With an Integrated Vacuum Tool
,”
Sens. Actuators, A
,
158
(
2
), pp.
320
327
.
57.
Chronis
,
N.
, and
Lee
,
L.
,
2004
, “
Polymer MEMS-Based Microgripper for Single Cell Manipulation
,”
17th IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS
), Maastricht, The Netherlands, Jan. 25–29, pp.
17
20
.
58.
Chan
,
E. K.
, and
Dutton
,
R. W.
,
2000
, “
Electrostatic Micromechanical Actuator With Extended Range of Travel
,”
J. Microelectromech. Syst.
,
9
(
3
), pp.
321
328
.
59.
Li
,
Y.
,
Li
,
Y.
,
Li
,
Q.
, and
Zi
,
Y.
,
2003
, “
Microgripper Based on Silicon Bulk Micromachining
,”
Qinghua Daxue Xuebao
,
43
(
5
), pp.
655
658
.
60.
Kalaiarasi
,
A.
, and
Thilagar
,
S.
,
2012
, “
Design and Modeling of Electrostatically Actuated Microgripper
,”
IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications
(
MESA
), Suzhou, China, July 8–10, pp.
7
11
.
61.
Yeh
,
J. A.
,
Chen
,
C.-N.
, and
Lui
,
Y.-S.
,
2005
, “
Large Rotation Actuated by In-Plane Rotary Comb-Drives With Serpentine Spring Suspension
,”
J. Micromech. Microeng.
,
15
(
1
), p.
201
.
62.
Chang
,
H.
,
Zhao
,
H.
,
Ye
,
F.
,
Yuan
,
G.
,
Xie
,
J.
,
Kraft
,
M.
, and
Yuan
,
W.
,
2014
, “
A Rotary Comb-Actuated Microgripper With a Large Displacement Range
,”
Microsyst. Technol.
,
20
(
1
), pp.
119
126
.
63.
Demaghsi
,
H.
,
Mirzajani
,
H.
, and
Ghavifekr
,
H.
,
2014
, “
A Novel Electrostatic Based Microgripper (Cellgripper) Integrated With Contact Sensor and Equipped With Vibrating System to Release Particles Actively
,”
Microsyst. Technol.
,
20
(
12
), pp.
2191
2202
.
64.
Khan
,
F.
,
Bazaz
,
S.
, and
Sohail
,
M.
,
2010
, “
Design, Implementation and Testing of Electrostatic SOI MUMPs Based Microgripper
,”
Microsyst. Technol.
,
16
(
11
), pp.
1957
1965
.
65.
Kim
,
C.-J.
,
Pisano
,
A.
, and
Muller
,
R.
,
1992
, “
Silicon-Processed Overhanging Microgripper
,”
J. Microelectromech. Syst.
,
1
(
1
), pp.
31
36
.
66.
Chen
,
T.
,
Chen
,
L.
,
Sun
,
L.
,
Rong
,
W.
, and
Yang
,
Q.
,
2010
, “
Micro Manipulation Based on Adhesion Control With Compound Vibration
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
6137
6142
.
67.
Chen
,
B.
,
Zhang
,
Y.
, and
Sun
,
Y.
,
2009
, “
Active Release of Microobjects Using a MEMS Microgripper to Overcome Adhesion Forces
,”
J. Microelectromech. Syst.
,
18
(
3
), June, pp.
652
659
.
68.
Beyeler
,
F.
,
Neild
,
A.
,
Oberti
,
S.
,
Bell
,
D.
,
Sun
,
Y.
,
Dual
,
J.
, and
Nelson
,
B.
,
2007
, “
Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field
,”
J. Microelectromech. Syst.
,
16
(
1
), pp.
7
15
.
69.
Piriyanont
,
B.
,
Fowler
,
A.
, and
Moheimani
,
S.
,
2015
, “
Force-Controlled MEMS Rotary Microgripper
,”
J. Microelectromech. Syst.
,
24
(
4
), pp.
1164
1172
.
70.
Piriyanont
,
B.
, and
Moheimani
,
S.
,
2014
, “
MEMS Rotary Microgripper With Integrated Electrothermal Force Sensor
,”
J. Microelectromech. Syst.
,
23
(
6
), pp.
1249
1251
.
71.
Que
,
L.
,
2008
, “
Thermal Actuation
,”
Comprehensive Microsystems
, Vol.
2
,
Y. B. G. T.
Zappe
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
69
100
.
72.
Iamoni
,
S.
, and
Somà
,
A.
,
2013
, “
Design of Cell Microgripper and Actuation Strategy
,”
Proc. SPIE
,
8765
, p.
876505
.
73.
Ivanova
,
K.
,
Ivanov
,
T.
,
Badar
,
A.
,
Volland
,
B. E.
,
Rangelow
, I
. W.
,
Andrijasevic
,
D.
,
Sümecz
,
F.
,
Fischer
,
S.
,
Spitzbart
,
M.
,
Brenner
,
W.
, and
Kostic
,
I.
,
2006
, “
Thermally Driven Microgripper as a Tool for Micro Assembly
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
1393
1395
.
74.
Chronis
,
N.
, and
Lee
,
L. P.
,
2005
, “
Electrothermally Activated Su-8 Microgripper for Single Cell Manipulation in Solution
,”
J. Microelectromech. Syst.
,
14
(
4
), pp.
857
863
.
75.
Kohl
,
M.
,
Just
,
E.
,
Pfleging
,
W.
, and
Miyazaki
,
S.
,
2000
, “
SMA Microgripper With Integrated Antagonism
,”
Sens. Actuators, A
,
83
(
1–3
), pp.
208
213
.
76.
Kohl
,
M.
,
Krevet
,
B.
, and
Just
,
E.
,
2002
, “
SMA Microgripper System
,”
Sens. Actuators, A
,
97–98
, pp.
646
652
.
77.
Boudaoud
,
M.
,
Haddab
,
Y.
, and
Le Gorrec
,
Y.
,
2010
, “
Modelling of a MEMS-Based Microgripper: Application to Dexterous Micromanipulation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
5634
5639
.
78.
Duc
,
T.
,
Lau
,
G.
,
Creemer
,
J.
, and
Sarro
,
P.
,
2008
, “
Electrothermal Microgripper With Large Jaw Displacement and Integrated Force Sensors
,”
J. Microelectromech. Syst.
,
17
(
6
), pp.
1546
1555
.
79.
Piriyanont
,
B.
,
Moheimani
,
S.
, and
Bazaei
,
A.
,
2013
, “
Design and Control of a MEMS Micro-Gripper With Integrated Electro-Thermal Force Sensor
,”
3rd Australian Control Conference
(
AUCC
), Fremantle, Australia, Nov. 4–5, pp.
479
484
.
80.
Zeman
,
M. J. F.
,
Bordatchev
,
E. V.
, and
Knopf
,
G. K.
,
2006
, “
Design, Kinematic Modeling and Performance Testing of an Electro-Thermally Driven Microgripper for Micromanipulation Applications
,”
J. Micromech. Microeng.
,
16
(
8
), p.
1540
.
81.
Chang
,
R.-J.
, and
Cheng
,
C.-Y.
,
2009
, “
Vision-Based Compliant-Joint Polymer Force Sensor Integrated With Microgripper for Measuring Gripping Force
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Singapore, July 14–17, pp.
18
23
.
82.
Chang
,
R.-J.
,
Shiu
,
C.-C.
, and
Cheng
,
C.-Y.
,
2013
, “
Self-Biased-SMA Drive PU Microgripper With Force Sensing in Visual Servo
,”
Int. J. Adv. Rob. Syst.
,
10
(
6
), p.
280
.
83.
Carlson
,
K.
,
Andersen
,
K. N.
,
Eichhorn
,
V.
,
Petersen
,
D. H.
,
Mølhave
,
K.
,
Bu
,
I. Y. Y.
,
Teo
,
K. B. K.
,
Milne
,
W. I.
,
Fatikow
,
S.
, and
Bøggild
,
P.
,
2007
, “
A Carbon Nanofibre Scanning Probe Assembled Using an Electrothermal Microgripper
,”
Nanotechnology
,
18
(
34
), p.
345501
.
84.
Andersen
,
K. N.
,
Carlson
,
K.
,
Petersen
,
D. H.
,
Mølhave
,
K.
,
Eichhorn
,
V.
,
Fatikow
,
S.
, and
Bøggild
,
P.
,
2008
, “
Electrothermal Microgrippers for Pick-and-Place Operations
,”
Microelectron. Eng.
,
85
(
5–6
), pp.
1128
1130
.
85.
Sardan
,
O.
,
Petersen
,
D. H.
,
Mølhave
,
K.
,
Sigmund
,
O.
, and
Bøggild
,
P.
,
2008
, “
Topology Optimized Electrothermal Polysilicon Microgrippers
,”
Microelectron. Eng.
,
85
(
5–6
), pp.
1096
1099
.
86.
Chu
,
J.
,
Zhang
,
R.
, and
Chen
,
Z.
,
2011
, “
A Novel Su-8 Electrothermal Microgripper Based on the Type Synthesis of the Kinematic Chain Method and the Stiffness Matrix Method
,”
J. Micromech. Microeng.
,
21
(
5
), p.
054030
.
87.
Daunton
,
R.
,
Gallant
,
A.
,
Wood
,
D.
, and
Kataky
,
R.
,
2011
, “
A Thermally Actuated Microgripper as an Electrochemical Sensor With the Ability to Manipulate Single Cells
,”
Chem. Commun.
,
47
(
22
), pp.
6446
6448
.
88.
Kim
,
K.
,
Liu
,
X.
,
Zhang
,
Y.
, and
Sun
,
Y.
,
2008
, “
Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper With Two-Axis Force Feedback
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055013
.
89.
Abuzaiter
,
A.
,
Nafea
,
M.
, and
Mohamed Ali
,
M.
,
2016
, “
Development of a Shape-Memory-Alloy Micromanipulator Based on Integrated Bimorph Microactuators
,”
Mechatronics
,
38
, pp.
16
28
.
90.
Stevens
,
J. M.
, and
Buckner
,
G. D.
,
2005
, “
Actuation and Control Strategies for Miniature Robotic Surgical Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
4
), pp.
537
549
.
91.
Kyung
,
J.
,
Ko
,
B.
,
Ha
,
Y.
, and
Chung
,
G.
,
2008
, “
Design of a Microgripper for Micromanipulation of Microcomponents Using SMA Wires and Flexible Hinges
,”
Sens. Actuators, A
,
141
(
1
), pp.
144
150
.
92.
Braun
,
S.
,
Sandstrom
,
N.
,
Stemme
,
G.
, and
Van Der Wijngaart
,
W.
,
2009
, “
Wafer-Scale Manufacturing of Bulk Shape-Memory-Alloy Microactuators Based on Adhesive Bonding of Titanium-Nickel Sheets to Structured Silicon Wafers
,”
J. Microelectromech. Syst.
,
18
(
6
), pp.
1309
1317
.
93.
Mohamed Ali
,
M.
, and
Takahata
,
K.
,
2010
, “
Frequency-Controlled Wireless Shape-Memory-Alloy Microactuators Integrated Using an Electroplating Bonding Process
,”
Sens. Actuators, A
,
163
(
1
), pp.
363
372
.
94.
Chang
,
R.
, and
Shiu
,
C.
,
2011
, “
Vision-Based Control of SMA-Actuated Polymer Microgripper With Force Sensing
,”
International Conference on Mechatronics and Automation
(
ICMA
), Beijing, China, Aug. 7–10, pp.
2095
2100
.
95.
Clausi
,
D.
,
Gradin
,
H.
,
Braun
,
S.
,
Peirs
,
J.
,
Stemme
,
G.
,
Reynaerts
,
D.
, and
van der Wijngaart
,
W.
,
2013
, “
Robust Actuation of Silicon MEMS Using SMA Wires Integrated at Wafer-Level by Nickel Electroplating
,”
Sens. Actuators, A
,
189
, pp.
108
116
.
96.
AbuZaiter
,
A.
,
Nafea
,
M.
,
Mohd Faudzi
,
A.
,
Kazi
,
S.
, and
Mohamed Ali
,
M.
,
2016
, “
Thermomechanical Behavior of Bulk NiTi Shape-Memory-Alloy Microactuators Based on Bimorph Actuation
,”
Microsyst. Technol.
,
22
(
8
), pp.
2125
2131
.
97.
Zainal
,
M. A.
,
Sahlan
,
S.
, and
Ali
,
M. S. M.
,
2015
, “
Micromachined Shape-Memory-Alloy Microactuators and Their Application in Biomedical Devices
,”
Micromachines
,
6
(
7
), p.
879
.
98.
Small
,
W.
,
Wilson
,
T. S.
,
Buckley
,
P. R.
,
Benett
,
W. J.
,
Loge
,
J. M.
,
Hartman
,
J.
, and
Maitland
,
D. J.
,
2007
, “
Prototype Fabrication and Preliminary In Vitro Testing of a Shape Memory Endovascular Thrombectomy Device
,”
IEEE Trans. Biomed. Eng.
,
54
(
9
), pp.
1657
1666
.
99.
Haga
,
Y.
,
Mizushima
,
M.
,
Matsunaga
,
T.
, and
Esashi
,
M.
,
2005
, “
Medical and Welfare Applications of Shape Memory Alloy Microcoil Actuators
,”
Smart Mater. Struct.
,
14
(
5
), p.
S266
.
100.
Bossi
,
S.
,
Kammer
,
S.
,
Dörge
,
T.
,
Menciassi
,
A.
,
Hoffmann
,
K. P.
, and
Micera
,
S.
,
2009
, “
An Implantable Microactuated Intrafascicular Electrode for Peripheral Nerves
,”
IEEE Trans. Biomed. Eng.
,
56
(
11
), pp.
2701
2706
.
101.
Murad
,
S.
,
Murad
,
J.
, and
Khan
,
H.
,
2013
, “
A Smarter SMA Technology for the Realization of Drug Delivering Endoscopic Capsule
,”
Rawal Med. J.
,
38
(
1
), pp.
66
74
.
102.
Houston
,
K.
,
Eder
,
C.
,
Sieber
,
A.
,
Menciassi
,
A.
,
Carrozza
,
M.
, and
Dario
,
P.
,
2007
, “
Polymer Sensorised Microgrippers Using SMA Actuation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Roma, Italy, Apr. 10–14, pp.
820
825
.
103.
Surbled
,
P.
,
Clerc
,
C.
,
Pioufle
,
B. L.
,
Ataka
,
M.
, and
Fujita
,
H.
,
2001
, “
Effect of the Composition and Thermal Annealing on the Transformation Temperatures of Sputtered TiNi Shape Memory Alloy Thin Films
,”
Thin Solid Films
,
401
(
12
), pp.
52
59
.
104.
Wang
,
J.
, and
Wang
,
J.
,
2013
, “
Shape Memory Effect of TiNi-Based Springs Trained by Constraint Annealing
,”
Met. Mater. Int.
,
19
(
2
), pp.
295
301
.
105.
Lin
,
C.-M.
,
Fan
,
C.-H.
, and
Lan
,
C.-C.
,
2009
, “
A Shape Memory Alloy Actuated Microgripper With Wide Handling Ranges
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Singapore, July 14–17, pp.
12
17
.
106.
Bharanidaran
,
R.
, and
Ramesh
,
T.
,
2014
, “
Numerical Simulation and Experimental Investigation of a Topologically Optimized Compliant Microgripper
,”
Sens. Actuators, A
,
205
, pp.
156
163
.
107.
Mackay
,
R.
,
Le
,
H.
, and
Keatch
,
R.
,
2011
, “
Design Optimisation and Fabrication of Su-8 Based Electro-Thermal Micro-Grippers
,”
J. Micro-Nano Mechatronics
,
6
(
1
), pp.
13
22
.
108.
Bechtold
,
T.
,
Rudnyi
,
E. B.
, and
Korvink
,
J. G.
,
2005
, “
Dynamic Electro-Thermal Simulation of Microsystems—A Review
,”
J. Micromech. Microeng.
,
15
(
11
), p.
R17
.
109.
Solano
,
B.
,
Merrell
,
J.
,
Gallant
,
A.
, and
Wood
,
D.
,
2014
, “
Modelling and Experimental Verification of Heat Dissipation Mechanisms in an Su-8 Electrothermal Microgripper
,”
Microelectron. Eng.
,
124
, pp.
90
93
.
110.
Kwan
,
A.
,
Song
,
S.
,
Lu
,
X.
,
Lu
,
L.
,
Teh
,
Y.-K.
,
Teh
,
Y.-F.
,
Chong
,
E.
,
Gao
,
Y.
,
Hau
,
W.
,
Zeng
,
F.
,
Wong
,
M.
,
Huang
,
C.
,
Taniyama
,
A.
,
Makino
,
Y.
,
Nishino
,
S.
,
Tsuchiya
,
T.
, and
Tabata
,
O.
,
2012
, “
Improved Designs for an Electrothermal In-Plane Microactuator
,”
J. Microelectromech. Syst.
,
21
(
3
), pp.
586
595
.
111.
Shivhare
,
P.
,
Uma
,
G.
, and
Umapathy
,
M.
,
2016
, “
Design Enhancement of a Chevron Electrothermally Actuated Microgripper for Improved Gripping Performance
,”
Microsyst. Technol.
,
22
(
11
), pp.
2323
2631
.
112.
Benecke
,
W.
, and
Riethmuller
,
W.
,
1989
, “
Applications of Silicon Microactuators Based on Bimorph Structures
,”
IEEE
Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, Salt Lake City, UT, Feb. 20–22, pp.
116
120
.
113.
Yan
,
D.
,
Khajepour
,
A.
, and
Mansour
,
R.
,
2003
, “
Modeling of Two-Hot-Arm Horizontal Thermal Actuator
,”
J. Micromech. Microeng.
,
13
(
2
), p.
312
.
114.
Comtois
,
J. H.
,
Bright
,
V. M.
, and
Phipps
,
M. W.
,
1995
, “
Thermal Microactuators for Surface-Micromachining Processes
,”
Proc. SPIE
,
2642
, pp.
10
21
.
115.
Huang
,
Q.-A.
, and
Lee
,
N. K. S.
,
1999
, “
Analysis and Design of Polysilicon Thermal Flexure Actuator
,”
J. Micromech. Microeng.
,
9
(
1
), p.
64
.
116.
Colinjivadi
,
K. S.
,
Lee
,
J.-B.
, and
Draper
,
R.
,
2008
, “
Viable Cell Handling With High Aspect Ratio Polymer Chopstick Gripper Mounted on a Nano Precision Manipulator
,”
Microsyst. Technol.
,
14
(
9
), pp.
1627
1633
.
117.
Chu
,
L. L.
,
Hetrick
,
J. A.
, and
Gianchandani
,
Y. B.
,
2002
, “
High Amplification Compliant Microtransmissions for Rectilinear Electrothermal Actuators
,”
Sens. Actuators, A
,
97–98
, pp.
776
783
.
118.
Hsu
,
C.-P.
,
Liao
,
T.
, and
Hsu
,
W.
,
2003
, “
Electrothermally-Driven Long Stretch Micro Drive With Monolithic Cascaded Actuation Units in Compact Arrangement
,”
12th International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems
, Boston, MA, June 8–12, Vol.
1
, pp.
348
351
.
119.
Venditti
,
R.
,
Lee
,
J. S. H.
,
Sun
,
Y.
, and
Li
,
D.
,
2006
, “
An In-Plane, Bi-Directional Electrothermal MEMS Actuator
,”
J. Micromech. Microeng.
,
16
(
10
), p.
2067
.
120.
Nikoobin
,
A.
, and
Niaki
,
M. H.
,
2011
, “
Describing the Effective Parameters in Grippers, and Designing the Novel Micro-Nano Gripper
,”
2nd International Conference on Control, Instrumentation and Automation
(
ICCIA
), Shiraz, Iran, Dec. 27–29, pp.
957
963
.
121.
Solano
,
B. P.
,
Gallant
,
A. J.
, and
Wood
,
D.
,
2009
, “
Design and Optimisation of a Microgripper: Demonstration of Biomedical Applications Using the Manipulation of Oocytes
,”
Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
(
MEMS/MOEMS
), Rome, Italy, Apr. 1–3, pp.
61
65
.
122.
Bordatchev
,
E. V.
, and
Nikumb
,
S. K.
,
2005
, “
Electro-Thermally Driven Microgrippers for Micro-Electro-Mechanical Systems Applications
,”
J. Micro/Nanolithogr., MEMS, MOEMS
,
4
(
2
), p.
023011
.
123.
Dow
,
A. B. A.
,
Jazizadeh
,
B.
,
Kherani
,
N. P.
, and
Rangelow
,
I.
,
2011
, “
Development and Modeling of an Electrothermally MEMS Microactuator With an Integrated Microgripper
,”
J. Micromech. Microeng.
,
21
(
12
), p.
125026
.
124.
Que
,
L.
,
Park
,
J. S.
, and
Gianchandani
,
Y. B.
,
1999
, “
Bent-Beam Electro-Thermal Actuators for High Force Applications
,”
12th IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS'99
), Orlando, FL, Jan. 21, pp.
31
36
.
125.
Demaghsi
,
H.
,
Mirzajani
,
H.
, and
Ghavifekr
,
H.
,
2014
, “
Design and Simulation of a Novel Metallic Microgripper Using Vibration to Release Nano Objects Actively
,”
Microsyst. Technol.
,
20
(
1
), pp.
65
72
.
126.
Varona
,
J.
,
Saenz
,
E.
,
Fiscal-Woodhouse
,
S.
, and
Hamoui
,
A.
,
2009
, “
Design and Fabrication of a Novel Microgripper Based on Electrostatic Actuation
,”
52nd IEEE International Midwest Symposium on Circuits and Systems
(
MWSCAS
), Cancun, Mexico, Aug. 2–5, pp.
827
832
.
127.
Geisberger
,
A. A.
, and
Sarkar
,
N.
,
2006
, “
Techniques in MEMS Microthermal Actuators and Their Applications
,”
MEMS/NEMS Handbook Techniques and Applications
(Sensors and Actuators), Vol.
4
,
Springer
,
New York
, pp.
201
261
.
128.
Rakotondrabe
,
M.
, and
Ivan
,
I.
,
2011
, “
Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric Microgripper Dedicated to Micromanipulation Tasks
,”
IEEE Trans. Autom. Sci. Eng.
,
8
(
4
), pp.
824
834
.
129.
Greminger
,
M.
,
Sezen
,
A.
, and
Nelson
,
B.
,
2005
, “
A Four Degree of Freedom MEMS Microgripper With Novel Bi-Directional Thermal Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Edmonton, AB, Canada, Aug. 2–6, pp.
2814
2819
.
130.
Kim
,
D.-H.
,
Lee
,
M.-G.
,
Kim
,
B.
, and
Shim
,
J.-H.
,
2004
, “
A Superelastic Alloy Microgripper With Embedded Electromagnetic Actuators and Piezoelectric Sensors
,”
Proc. SPIE
,
5604
, pp.
230
237
.
131.
Madou
,
M.
,
2002
,
Fundamentals of Microfabrication: The Science of Miniaturization
,
2nd ed.
,
Taylor & Francis
,
Abingdon, UK
.
132.
Park
,
J.
,
Kim
,
S.
,
Kim
,
D.-H.
,
Kim
,
B.
,
Kwon
,
S. J.
,
Park
,
J.-O.
, and
Lee
,
K.-I.
,
2005
, “
Identification and Control of a Sensorized Microgripper for Micromanipulation
,”
IEEE/ASME Trans. Mechatronics
,
10
(
5
), pp.
601
606
.
133.
Giouroudi
,
I.
,
Hötzendorfer
,
H.
,
Kosel
,
J.
,
Andrijasevic
,
D.
, and
Brenner
,
W.
,
2008
, “
Development of a Microgripping System for Handling of Microcomponents
,”
Prec. Eng.
,
32
(
2
), pp.
148
152
.
134.
Ikeda
,
T.
,
1990
,
Fundamentals of Piezoelectricity
,
Oxford Science Publications, Oxford University Press
,
Oxford, UK
.
135.
Ouyang
,
P. R.
,
Tjiptoprodjo
,
R. C.
,
Zhang
,
W. J.
, and
Yang
,
G. S.
,
2008
, “
Micro-Motion Devices Technology: The State of Arts Review
,”
Int. J. Adv. Manuf. Technol.
,
38
(
5
), pp.
463
478
.
136.
Sun
,
X.
,
Chen
,
W.
,
Fatikow
,
S.
,
Tian
,
Y.
,
Zhou
,
R.
,
Zhang
,
J.
, and
Mikczinski
,
M.
,
2015
, “
A Novel Piezo-Driven Microgripper With a Large Jaw Displacement
,”
Microsyst. Technol.
,
21
(
4
), pp.
931
942
.
137.
Simmers
,
G. E.
,
Hodgkins
,
J. R.
,
Mascarenas
,
D. D.
,
Park
,
G.
, and
Sohn
,
H.
,
2004
, “
Improved Piezoelectric Self-Sensing Actuation
,”
J. Intell. Mater. Syst. Struct.
,
15
(
12
), pp.
941
953
.
138.
Ivan
,
I. A.
,
Rakotondrabe
,
M.
,
Lutz
,
P.
, and
Chaillet
,
N.
,
2009
, “
Quasistatic Displacement Self-Sensing Method for Cantilevered Piezoelectric Actuators
,”
Rev. Sci. Instrum.
,
80
(
6
), p.
065102
.
139.
Mohamed
,
Z.
,
Abdullahi
,
A. M.
,
Ahmad
,
M.
, and
Husain
,
A.
,
2014
, “
Dynamic Hysteresis Based Modeling of Piezoelectric Actuators
,”
J. Teknol.
,
67
(
5
), pp.
9
13
.
140.
Niezrecki
,
C.
,
Brei
,
D.
,
Balakrishnan
,
S.
, and
Moskalik
,
A.
,
2001
, “
Piezoelectric Actuation: State of the Art
,”
Shock Vib. Dig.
,
33
(
4
), pp.
269
280
.
141.
Wang
,
D.
,
Yang
,
Q.
, and
Dong
,
H.
,
2013
, “
A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
138
147
.
142.
Chang
,
R.
, and
Chen
,
C.
,
2007
, “
Using Microgripper for Adhesive Bonding in Automatic Microassembly System
,”
International Conference on Mechatronics and Automation
(
ICMA
), Harbin, China, Aug. 5–8, pp.
440
445
.
143.
Xu
,
Q.
,
2013
, “
A New Compliant Microgripper With Integrated Position and Force Sensing
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, Australia, July 9–12, pp.
591
596
.
144.
Zubir
,
M. N. M.
, and
Shirinzadeh
,
B.
,
2009
, “
Development of a High Precision Flexure-Based Microgripper
,”
Prec. Eng.
,
33
(
4
), pp.
362
370
.
145.
Sun
,
X.
,
Chen
,
W.
,
Tian
,
Y.
,
Fatikow
,
S.
,
Zhou
,
R.
,
Zhang
,
J.
, and
Mikczinski
,
M.
,
2013
, “
A Novel Flexure-Based Microgripper With Double Amplification Mechanisms for Micro/Nano Manipulation
,”
Rev. Sci. Instrum.
,
84
(
8
), p.
085002
.
146.
Blideran
,
M. M.
,
Bertsche
,
G.
,
Henschel
,
W.
, and
Kern
,
D. P.
,
2006
, “
A Mechanically Actuated Silicon Microgripper for Handling Micro- and Nanoparticles
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
1382
1385
.
147.
Blideran
,
M.
,
Fleischer
,
M.
,
Grauvogel
,
F.
,
Löffler
,
K.
,
Langer
,
M.
, and
Kern
,
D.
,
2008
, “
Real-Time Gripping Detection for a Mechanically Actuated Microgripper
,”
Microelectron. Eng.
,
85
(
5–6
), pp.
1022
1026
.
148.
Chen
,
T.
,
Chen
,
L.
, and
Sun
,
L.
,
2009
, “
Piezoelectrically Driven Silicon Microgrippers Integrated With Sidewall Piezoresistive Sensor
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
2989
2994
.
149.
Chen
,
T.
,
Chen
,
L.
,
Sun
,
L.
, and
Li
,
X.
,
2009
, “
Design and Fabrication of a Four-Arm-Structure MEMS Gripper
,”
IEEE Trans. Ind. Electron.
,
56
(
4
), pp.
996
1004
.
150.
Jeon
,
C.-S.
,
Park
,
J.-S.
,
Lee
,
S.-Y.
, and
Moon
,
C.-W.
,
2007
, “
Fabrication and Characteristics of Out-of-Plane Piezoelectric Micro Grippers Using MEMS Processes
,”
Thin Solid Films
,
515
(
12
), pp.
4901
4904
.
151.
Jayaram
,
K.
, and
Joshi
,
S. S.
,
2010
, “
Development of a Flexure-Based, Force-Sensing Microgripper for Micro-Object Manipulation
,”
J. Micromech. Microeng.
,
20
(
1
), p.
015001
.
152.
Kim
,
B.-S.
,
Park
,
J.-S.
,
Kang
,
B. H.
, and
Moon
,
C.
,
2012
, “
Fabrication and Property Analysis of a MEMS Micro-Gripper for Robotic Micro-Manipulation
,”
Rob. Comput.-Integr. Manuf.
,
28
(
1
), pp.
50
56
.
153.
Panepucci
,
R. R.
, and
Martinez
,
J. A.
,
2008
, “
Novel Su-8 Optical Waveguide Microgripper for Simultaneous Micromanipulation and Optical Detection
,”
J. Vac. Sci. Technol. B
,
26
(
6
), pp.
2624
2627
.
154.
Menciassi
,
A.
,
Eisinberg
,
A.
,
Mazzoni
,
M.
, and
Dario
,
P.
,
2002
, “
A Sensorized μelectro Discharge Machined Superelastic Alloy Microgripper for Micromanipulation: Simulation and Characterization
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Lausanne, Switzerland, Sept. 30–Oct. 4, Vol.
2
, pp.
1591
1595
.
155.
Choi
,
H.-S.
,
Lee
,
D.-C.
,
Kim
,
S.-S.
, and
Han
,
C.-S.
,
2005
, “
The Development of a Microgripper With a Perturbation-Based Configuration Design Method
,”
J. Micromech. Microeng.
,
15
(
6
), p.
1327
.
156.
Choi
,
H.
,
Shin
,
D.
,
Ryuh
,
Y.
, and
Han
,
C.
,
2011
, “
Development of a Micro Manipulator Using a Microgripper and PZT Actuator for Microscopic Operations
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Karon Beach, Thailand, Dec. 7–11, pp.
744
749
.
157.
Smith
,
C. S.
,
1954
, “
Piezoresistive Effect in Germanium and Silicon
,”
Phys. Rev.
,
94
(
1
), pp.
42
49
.
158.
Barlian
,
A. A.
,
Park
,
W. T.
,
Mallon
,
J. R.
,
Rastegar
,
A. J.
, and
Pruitt
,
B. L.
,
2009
, “
Review: Semiconductor Piezoresistance for Microsystems
,”
Proc. IEEE
,
97
(
3
), pp.
513
552
.
159.
Kumar
,
S. S.
, and
Pant
,
B. D.
,
2014
, “
Design Principles and Considerations for the ‘Ideal’ Silicon Piezoresistive Pressure Sensor: A Focused Review
,”
Microsyst. Technol.
,
20
(
7
), pp.
1213
1247
.
160.
Tadigadapa
,
S.
, and
Mateti
,
K.
,
2009
, “
Piezoelectric MEMS Sensors: State-of-the-Art and Perspectives
,”
Meas. Sci. Technol.
,
20
(
9
), p.
092001
.
161.
Gautschi
,
G.
,
2002
,
Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers
,
1st ed.
,
Springer-Verlag
,
Berlin
.
162.
Baxter
,
L. K.
,
1997
,
Capacitive Sensors: Design and Applications
,
Wiley-IEEE Press
,
New York
.
163.
Shashank
,
A.
,
Tiwana
,
M. I.
,
Redmond
,
S. J.
, and
Lovell
,
N. H.
,
2009
, “
Design, Simulation and Fabrication of a Low Cost Capacitive Tactile Shear Sensor for a Robotic Hand
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Minneapolis, MN, Sept. 3–6, pp.
4132
4135
.
164.
Kim
,
K.
,
Liu
,
X.
,
Zhang
,
Y.
,
Cheng
,
J.
,
Yu Wu
,
X.
, and
Sun
,
Y.
,
2009
, “
Elastic and Viscoelastic Characterization of Microcapsules for Drug Delivery Using a Force-Feedback MEMS Microgripper
,”
Biomed. Microdevices
,
11
(
2
), pp.
421
427
.
165.
Brookhuis
,
R.
,
Lammerink
,
T.
,
Wiegerink
,
R.
,
de Boer
,
M.
, and
Elwenspoek
,
M.
,
2012
, “
3D Force Sensor for Biomechanical Applications
,”
Sens. Actuators, A
,
182
, pp.
28
33
.
166.
Senturia
,
S. D.
,
2000
,
Microsystem Design
,
Springer
,
New York
.
167.
Pantazi
,
A.
,
Sebastian
,
A.
,
Cherubini
,
G.
,
Lantz
,
M.
,
Pozidis
,
H.
,
Rothuizen
,
H.
, and
Eleftheriou
,
E.
,
2007
, “
Control of MEMS-Based Scanning-Probe Data-Storage Devices
,”
IEEE Trans. Control Syst. Technol.
,
15
(
5
), pp.
824
841
.
168.
Sebastian
,
A.
,
Pantazi
,
A.
,
Pozidis
,
H.
, and
Eleftheriou
,
E.
,
2008
, “
Nanopositioning for Probe-Based Data Storage [Applications of Control]
,”
IEEE Control Syst.
,
28
(
4
), pp.
26
35
.
169.
Sebastian
,
A.
, and
Wiesmann
,
D.
,
2008
, “
Modeling and Experimental Identification of Silicon Microheater Dynamics: A Systems Approach
,”
J. Microelectromech. Syst.
,
17
(
4
), pp.
911
920
.
170.
Sebastian
,
A.
, and
Pantazi
,
A.
,
2012
, “
Nanopositioning With Multiple Sensors: A Case Study in Data Storage
,”
IEEE Trans. Control Syst. Technol.
,
20
(
2
), pp.
382
394
.
171.
Zhu
,
Y.
,
Moheimani
,
S. O. R.
, and
Yuce
,
M. R.
,
2011
, “
Simultaneous Capacitive and Electrothermal Position Sensing in a Micromachined Nanopositioner
,”
IEEE Electron Device Lett.
,
32
(
8
), pp.
1146
1148
.
172.
Greminger
,
M. A.
, and
Nelson
,
B. J.
,
2004
, “
Vision-Based Force Measurement
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
26
(
3
), pp.
290
298
.
173.
Cappelleri
,
D. J.
,
Piazza
,
G.
, and
Kumar
,
V.
,
2009
, “
Two-Dimensional, Vision-Based μN Force Sensor for Microrobotics
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
1016
1021
.
174.
Chang, R. J. and Chen, C. C., 2010, “
Using Microgripper in Development of Automatic Adhesive Glue Transferring and Binding Microassembly System
,”
Engineering
,
2
, pp. 1–11.
175.
Giouroudi
,
I.
,
Hötzendorfer
,
H.
,
Andrijasevic
,
D.
,
Ferros
,
M.
, and
Brenner
,
W.
,
2006
, “
Design of a Microgripping System With Visual and Force Feedback for MEMS Applications
,”
Institution of Engineering and Technology Seminar on MEMS Sensors and Actuators
(
ICEPT
), London, UK, Apr. 28, pp.
243
250
.
176.
Belfiore
,
N. P.
, and
Simeone
,
P.
,
2013
, “
Inverse Kinetostatic Analysis of Compliant Four-Bar Linkages
,”
Mech. Mach. Theory
,
69
, pp.
350
372
.
177.
Verotti
,
M.
,
Crescenzi
,
R.
,
Balucani
,
M.
, and
Belfiore
,
N. P.
,
2015
, “
MEMS-Based Conjugate Surfaces Flexure Hinge
,”
ASME J. Mech. Des.
,
137
(
1
), p.
012301
.
178.
Belfiore
,
N. P.
,
2014
, “
Functional Synthesis of a New Class of Micro Electro-Mechanical Systems
,”
Advances in Soft Computing, Intelligent Robotics and Control
(Topics in Intelligent Engineering and Informatics), Vol.
8
,
J.
Fodor
and
R.
Fullér
, eds.,
Springer Science and Business Media
,
Cham, Switzerland
, pp.
81
93
.
179.
Verotti
,
M.
,
2016
, “
Analysis of the Center of Rotation in Primitive Flexures: Uniform Cantilever Beams With Constant Curvature
,”
Mech. Mach. Theory
,
97
, pp.
29
50
.
180.
Borovic
,
B.
,
Liu
,
A. Q.
,
Popa
,
D.
,
Cai
,
H.
, and
Lewis
,
F. L.
,
2005
, “
Open-Loop Versus Closed-Loop Control of MEMS Devices: Choices and Issues
,”
J. Micromech. Microeng.
,
15
(
10
), p.
1917
.
181.
Messenger
,
R.
,
Aten
,
Q.
,
McLain
,
T.
, and
Howell
,
L.
,
2009
, “
Piezoresistive Feedback Control of a MEMS Thermal Actuator
,”
J. Microelectromech. Syst.
,
18
(
6
), pp.
1267
1278
.
182.
Komati
,
B.
,
Rabenorosoa
,
K.
,
Clevy
,
C.
, and
Lutz
,
P.
,
2013
, “
Automated Guiding Task of a Flexible Micropart Using a Two-Sensing-Finger Microgripper
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
515
524
.
183.
Xu
,
Q.
,
2014
, “
Design and Smooth Position/Force Switching Control of a Miniature Gripper for Automated Microhandling
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1023
1032
.
184.
Raibert
,
M.
, and
Craig
,
J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
103
(
2
), pp.
126
133
.
185.
Perdereau
,
V.
, and
Drouin
,
M.
,
1993
, “
A New Scheme for Hybrid Force-Position Control
,”
Robotica
,
11
(
5
), pp.
453
464
.
186.
Seraji
,
H.
, and
Colbaugh
,
R.
,
1997
, “
Force Tracking in Impedance Control
,”
Int. J. Rob. Res.
,
16
(
1
), pp.
97
117
.
187.
Rabenorosoa
,
K.
,
Clevy
,
C.
, and
Lutz
,
P.
,
2010
, “
Hybrid Force/Position Control Applied to Automated Guiding Tasks at the Microscale
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
4366
4371
.
188.
Xu
,
Q.
,
2013
, “
Adaptive Discrete-Time Sliding Mode Impedance Control of a Piezoelectric Microgripper
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
663
673
.
189.
Fisher
,
W. D.
, and
Mujtaba
,
M.
,
1992
, “
Hybrid Position/Force Control: A Correct Formulation
,”
Int. J. Rob. Res.
,
11
(
4
), pp.
299
311
.
190.
Xu
,
Q.
,
2015
, “
Robust Impedance Control of a Compliant Microgripper for High-Speed Position/Force Regulation
,”
IEEE Trans. Ind. Electron.
,
62
(
2
), pp.
1201
1209
.
191.
Verotti
,
M.
,
Dochshanov
,
A.
, and
Belfiore
,
N.
,
2017
, “
Compliance Synthesis of CSFH MEMS-Based Microgrippers
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022301
.
192.
Belfiore
,
N.
,
Verotti
,
M.
, and
Consorti
,
L.
,
2010
, “
Comparative Analysis of Isotropy Indices in RR and RRP Arms
,”
Int. J. Mech. Control
,
11
(
1
), pp.
3
12
.
193.
Belfiore
,
N.
,
Di Giamberardino
,
P.
,
Rudas
,
I.
, and
Verotti
,
M.
,
2011
, “
Isotropy in Any RR Planar Dyad Under Active Joint Stiffness Regulation
,”
Int. J. Mech. Control
,
12
(
1
), pp.
75
81
.
194.
Belfiore
,
N. P.
,
Verotti
,
M.
,
Di Giamberardino
,
P.
, and
Rudas
,
I. J.
,
2012
, “
Active Joint Stiffness Regulation to Achieve Isotropic Compliance in the Euclidean Space
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041010
.
195.
Verotti
,
M.
, and
Belfiore
,
N. P.
,
2016
, “
Isotropic Compliance in E(3): Feasibility and Workspace Mapping
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061005
.
196.
Verotti
,
M.
,
Masarati
,
P.
,
Morandini
,
M.
, and
Belfiore
,
N.
,
2016
, “
Isotropic Compliance in the Special Euclidean Group SE(3)
,”
Mech. Mach. Theory
,
98
, pp.
263
281
.
197.
Balucani
,
M.
,
Belfiore
,
N. P.
,
Crescenzi
,
R.
, and
Verotti
,
M.
,
2011
, “
The Development of a MEMS/NEMS-Based 3 DOF Compliant Micro Robot
,”
Int. J. Mech. Control
,
12
(
1
), pp.
3
10
.
198.
Balucani
,
M.
,
Belfiore
,
N.
,
Crescenzi
,
R.
,
Genua
,
M.
, and
Verotti
,
M.
,
2011
, “
Developing and Modeling a Plane 3 DOF Compliant Micromanipulator by Means of a Dedicated MBS Code
,”
NSTI Nanotechnology Conference and Expo
(
NSTI-Nanotech
), Boston, MA, June 13–16, Vol.
2
, pp.
659
662
.
199.
Belfiore
,
N. P.
,
Balucani
,
M.
,
Crescenzi
,
R.
, and
Verotti
,
M.
,
2012
, “
Performance Analysis of Compliant MEMS Parallel Robots Through Pseudo-Rigid-Body Model Synthesis
,”
ASME
Paper No. ESDA2012-82636.
200.
Belfiore
,
N. P.
,
EmamiMeibodi
,
M.
,
Verotti
,
M.
,
Crescenzi
,
R.
,
Balucani
,
M.
, and
Nenzi
,
P.
,
2013
, “
Kinetostatic Optimization of a MEMS-Based Compliant 3 DOF Plane Parallel Platform
,”
IEEE 9th International Conference on Computational Cybernetics
(
ICCC
), Tihany, Hungary, July 8–10, pp.
26
266
.
201.
Belouschek
,
P.
,
Lorenz
,
D.
, and
Adamczyk
,
Z.
,
1991
, “
Calculation of Electrostatic Interaction Forces Between Ellipsoidal Particles
,”
Colloid Polym. Sci.
,
269
(
5
), pp.
528
531
.
202.
Sitti
,
M.
,
Horiguchi
,
S.
, and
Hashimoto
,
H.
,
1999
, “
Tele-Touch Feedback of Surfaces at the Micro/Nano Scale: Modeling and Experiments
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), Kyongju, South Korea, Oct. 17–21, Vol.
2
, pp.
882
888
.
203.
Gorman
,
J.
, and
Shapiro
,
B.
,
2011
,
Feedback Control of MEMS to Atoms (MEMS Reference Shelf)
,
Springer Science & Business Media
,
New York
.
204.
Lu
,
M.-C.
, and
Fedder
,
G.
,
2004
, “
Position Control of Parallel-Plate Microactuators for Probe-Based Data Storage
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
759
769
.
205.
Bryzek
,
J.
,
Abbott
,
H.
,
Flannery
,
A.
,
Cagle
,
D.
, and
Maitan
,
J.
,
2003
, “
Control Issues for MEMS
,”
42nd IEEE Conference on Decision and Control
(
CDC
), Maui, HI, Dec. 9–12, Vol.
3
, pp.
3039
3047
.
206.
Burns
,
D.
, and
Bright
,
V.
,
1997
, “
Nonlinear Flexures for Stable Deflection of an Electrostatically Actuated Micromirror
,”
Proc. SPIE
,
3226
, pp.
125
136
.
207.
Seeger
,
J. I.
, and
Crary
,
S. B.
,
1997
, “
Stabilization of Electrostatically Actuated Mechanical Devices
,”
International Conference on Solid-State Sensors and Actuators
(
TRANSDUCERS
), Chicago, IL, June 19, Vol.
2
, pp.
1133
1136
.
208.
Zhang
,
W. M.
,
Yan
,
H.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2014
, “
Electrostatic Pull-In Instability in MEMS/NEMS: A Review
,”
Sens. Actuators, A
,
214
, pp.
187
218
.
209.
Chen
,
C.
,
1999
,
Linear System Theory and Design
,
Oxford University Press
,
Oxford, UK
.
210.
Cheung
,
P.
,
Horowitz
,
R.
, and
Howe
,
R.
,
1996
, “
Design, Fabrication, Position Sensing, and Control of an Electrostatically-Driven Polysilicon Microactuator
,”
IEEE Trans. Magn.
,
32
(
1
), pp.
122
128
.
211.
Vagia
,
M.
, and
Tzes
,
A.
,
2008
, “
Robust PID Control Design for an Electrostatic Micromechanical Actuator With Structured Uncertainty
,”
IET Control Theory Appl.
,
2
(
5
), pp.
365
373
.
212.
Hung
,
E.
, and
Senturia
,
S.
,
1999
, “
Extending the Travel Range of Analog-Tuned Electrostatic Actuators
,”
J. Microelectromech. Syst.
,
8
(
4
), pp.
497
505
.
213.
Piyabongkarn
,
D.
,
Sun
,
Y.
,
Rajamani
,
R.
,
Sezen
,
A.
, and
Nelson
,
B.
,
2005
, “
Travel Range Extension of a MEMS Electrostatic Microactuator
,”
IEEE Trans. Control Syst. Technol.
,
13
(
1
), pp.
138
145
.
214.
Zhu
,
G.
,
Penet
,
J.
, and
Saydy
,
L.
,
2006
, “
Robust Control of an Electrostatically Actuated MEMS in the Presence of Parasitics and Parametric Uncertainties
,”
American Control Conference
(
ACC
), Minneapolis, MN, June 14–16, p.
6
.
215.
Zhu
,
G.
,
Levine
,
J.
, and
Praly
,
L.
,
2005
, “
Improving the Performance of an Electrostatically Actuated MEMS by Nonlinear Control: Some Advances and Comparisons
,”
44th IEEE Conference on Decision and Control and European Control Conference
(
CDC-ECC
), Seville, Spain, Dec. 15, pp.
7534
7539
.
216.
Boudaoud
,
M.
,
Le Gorrec
,
Y.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2015
, “
Gain Scheduling Control of a Nonlinear Electrostatic Microgripper: Design by an Eigenstructure Assignment With an Observer-Based Structure
,”
IEEE Trans. Control Syst. Technol.
,
23
(
4
), pp.
1255
1267
.
217.
Tan
,
X.
, and
Baras
,
J. S.
,
2005
, “
Adaptive Identification and Control of Hysteresis in Smart Materials
,”
IEEE Trans. Autom. Control
,
50
(
6
), pp.
827
839
.
218.
Reynaerts
,
D.
, and
Van Brussel
,
H.
,
1998
, “
Design Aspects of Shape Memory Actuators
,”
Mechatronics
,
8
(
6
), pp.
635
656
.
219.
Gorbet
,
R.
, and
Wang
,
D.
,
1995
, “
General Stability Criteria for a Shape Memory Alloy Position Control System
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Nagoya, Japan, May 21–27, Vol.
3
, pp.
2313
2319
.
220.
Minase
,
J.
,
Lu
,
T.-F.
,
Cazzolato
,
B.
, and
Grainger
,
S.
,
2010
, “
A Review, Supported by Experimental Results, of Voltage, Charge and Capacitor Insertion Method for Driving Piezoelectric Actuators
,”
Prec. Eng.
,
34
(
4
), pp.
692
700
.
221.
Gu
,
G.-Y.
,
Zhu
,
L.-M.
,
Su
,
C.-Y.
, and
Ding
,
H.
,
2013
, “
Motion Control of Piezoelectric Positioning Stages: Modeling, Controller Design, and Experimental Evaluation
,”
IEEE/ASME Trans. Mechatronics
,
18
(
5
), pp.
1459
1471
.
222.
Ru
,
C. H.
,
Pang
,
B. H.
,
Wang
,
K. J.
, and
Ye
,
X. F.
,
2006
, “
Adaptive Identification and Control of Hysteresis for Piezoelectric Actuator
,”
International Conference on Machine Learning and Cybernetics
, Dalian, China, Aug. 13–16, pp.
2834
2839
.
223.
Grossard
,
M.
,
Boukallel
,
M.
,
Chaillet
,
N.
, and
Rotinat-Libersa
,
C.
,
2011
, “
Modeling and Robust Control Strategy for a Control-Optimized Piezoelectric Microgripper
,”
IEEE/ASME Trans. Mechatronics
,
16
(
4
), pp.
674
683
.
224.
Xu
,
Q.
,
2013
, “
Precision Position/Force Interaction Control of a Piezoelectric Multimorph Microgripper for Microassembly
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
503
514
.
225.
Jain
,
R. K.
,
Majumder
,
S.
,
Ghosh
,
B.
, and
Saha
,
S.
,
2015
, “
Design and Manufacturing of Mobile Micro Manipulation System With a Compliant Piezoelectric Actuator Based Micro Gripper
,”
J. Manuf. Syst.
,
35
(
6
), pp.
76
91
.
226.
Arai
,
F.
,
Andou
,
D.
, and
Fukuda
,
T.
,
1996
, “
Adhesion Forces Reduction for Micro Manipulation Based on Micro Physics
,” The Ninth Annual International Workshop on Micro Electro Mechanical Systems (
MEMS
):
An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems
, Sam Diego, CA, Feb. 11–15, pp.
354
359
.
227.
Zhou
,
Y.
, and
Nelson
,
B.
,
2000
, “
The Effect of Material Properties and Gripping Force on Micrograsping
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 24–28, Vol.
2
, pp.
1115
1120
.
228.
Zhou
,
Y.
, and
Nelson
,
B. J.
,
1998
, “
Adhesion Force Modeling and Measurement for Micromanipulation
,”
Proc. SPIE
,
3519
, pp.
169
180
.
229.
Tarhan
,
M. C.
,
Lafitte
,
N.
,
Tauran
,
Y.
,
Jalabert
,
L.
,
Kumemura
,
M.
,
Perret
,
G.
,
Kim
,
B.
,
Coleman
,
A. W.
,
Fujita
,
H.
, and
Collard
,
D.
,
2016
, “
A Rapid and Practical Technique for Real-Time Monitoring of Biomolecular Interactions Using Mechanical Responses of Macromolecules
,”
Sci. Rep.
,
6
(
1
), p.
28001
.
230.
Amjad
,
K.
,
Bazaz
,
S.
, and
Lai
,
Y.
,
2008
, “
Design of an Electrostatic MEMS Microgripper System Integrated With Force Sensor
,”
International Conference on Microelectronics
(
ICM
), Dec. 14–17, pp.
236
239
.
231.
Jia
,
Y.
, and
Xu
,
Q.
,
2013
, “
Design of a Monolithic Dual-Axis Electrostatic Actuation MEMS Microgripper With Capacitive Position/Force Sensors
,”
13th IEEE Conference on Nanotechnology
(
IEEE-NANO
), Beijing, China, Aug. 5–8, pp.
817
820
.
232.
Legtenberg
,
R.
,
Groeneveld
,
A. W.
, and
Elwenspoek
,
M.
,
1996
, “
Comb-Drive Actuators for Large Displacements
,”
J. Micromech. Microeng.
,
6
(
3
), p.
320
.
233.
Cecchi
,
R.
,
Verotti
,
M.
,
Capata
,
R.
,
Dochshanov
,
A.
,
Broggiato
,
G.
,
Crescenzi
,
R.
,
Balucani
,
M.
,
Natali
,
S.
,
Razzano
,
G.
,
Lucchese
,
F.
,
Bagolini
,
A.
,
Bellutti
,
P.
,
Sciubba
,
E.
, and
Belfiore
,
N. P.
,
2015
, “
Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison
,”
Micromachines
,
6
(
11
), pp.
1710
1728
.
234.
Belfiore
,
N.
,
Broggiato
,
G.
,
Verotti
,
M.
,
Balucani
,
M.
,
Crescenzi
,
R.
,
Bagolini
,
A.
,
Bellutti
,
P.
, and
Boscardin
,
M.
,
2015
, “
Simulation and Construction of a MEMS CSFH Based Microgripper
,”
Int. J. Mech. Control
,
16
(
1
), pp.
21
30
.
235.
Voicu
,
R.
,
Muller
,
R.
, and
Eftime
,
L.
,
2008
, “
Design Optimization for an Electro-Thermally Actuated Polymeric Microgripper
,” Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (
MEMS/MOEMS
), Nice, France, Apr. 9–11, pp.
182
186
.
236.
Huang
,
S.-C.
, and
Chen
,
W.-L.
,
2008
, “
Design of Topologically Optimal Microgripper
,”
IEEE International Conference on Systems, Man and Cybernetics
(
SMC
), Singapore, Oct. 12–15, pp.
1694
1698
.
237.
Keller
,
C. G.
, and
Howe
,
R. T.
,
1997
, “
Hexsil Tweezers for Teleoperated Micro-Assembly
,”
10th Annual International Workshop on Micro Electro Mechanical Systems
(
MEMS
), Nagoya, Japan, Jan. 26–30, pp.
72
77
.
238.
Zheng
,
X.
,
Kim
,
J.-K.
, and
Lee
,
D.-W.
,
2011
, “
Design and Fabrication of a Novel Microgripper With Four-Point Contact Fingers
,”
J. Vac. Sci. Technol., A
,
29
(
1
), p.
011007
.
239.
Elbuken
,
C.
,
Gui
,
L.
,
Ren
,
C. L.
,
Yavuz
,
M.
, and
Khamesee
,
M. B.
,
2008
, “
Design and Analysis of a Polymeric Photo-Thermal Microactuator
,”
Sens. Actuators, A
,
147
(
1
), pp.
292
299
.
240.
Huang
,
S.-C.
,
Lee
,
C.-M.
,
Chiu
,
C.-C.
, and
Chen
,
W.-L.
,
2006
, “
Topology Optimal Compliant Microgripper
,”
JSME Int. J., Ser. A
,
49
(
4
), pp.
589
596
.
241.
Lu
,
K.
,
Zhang
,
J.
,
Chen
,
W.
,
Jiang
,
J.
, and
Chen
,
W.
,
2014
, “
A Monolithic Microgripper With High Efficiency and High Accuracy for Optical Fiber Assembly
,”
IEEE 9th Conference on Industrial Electronics and Applications
(
ICIEA
), Hangzhou, China, June 9–11, pp.
1942
1947
.
242.
Ballandras
,
S.
,
Basrour
,
S.
,
Robert
,
L.
,
Megtert
,
S.
,
Blind
,
P.
,
Rouillay
,
M.
,
Bernéde
,
P.
, and
Daniau
,
W.
,
1997
, “
Microgrippers Fabricated by the {LIGA} Technique
,”
Sens. Actuators, A
,
58
(
3
), pp.
265
272
.
243.
Zhang
,
D.
,
Zhang
,
Z.
,
Gao
,
Q.
,
Xu
,
D.
, and
Liu
,
S.
,
2015
, “
Development of a Monolithic Compliant SPCA-Driven Micro-Gripper
,”
Mechatronics
,
25
, pp.
37
43
.
244.
Wu
,
Z.
, and
Li
,
Y.
,
2014
, “
Design, Modeling, and Analysis of a Novel Microgripper Based on Flexure Hinges
,”
Adv. Mech. Eng.
,
6
, p.
47584
.
245.
Ai
,
W.
, and
Xu
,
Q.
,
2014
, “
New Structure Design of a Flexure-Based Compliant Microgripper
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Bali, Indonesia, Dec. 5–10, pp.
2588
2593
.
246.
Ai
,
W.
, and
Xu
,
Q.
,
2014
, “
New Structural Design of a Compliant Gripper Based on the Scott-Russell Mechanism
,”
Int. J. Adv. Rob. Syst.
,
11
(
12
), p.
192
.
247.
Kurita
,
Y.
,
Sugihara
,
F.
,
Ueda
,
J.
, and
Ogasawara
,
T.
,
2012
, “
Piezoelectric Tweezer-Type End Effector With Force- and Displacement-Sensing Capability
,”
IEEE/ASME Trans. Mechatronics
,
17
(
6
), pp.
1039
1048
.
You do not currently have access to this content.