Deoxyribose nucleic acid (DNA) origami nanotechnology is a recently developed self-assembly process for design and fabrication of complex three-dimensional (3D) nanostructures using DNA as a functional material. This paper reviews our recent progress in applying DNA origami to design kinematic mechanisms at the nanometer scale. These nanomechanisms, which we call DNA origami mechanisms (DOM), are made of relatively stiff bundles of double-stranded DNA (dsDNA), which function as rigid links, connected by highly compliant single-stranded DNA (ssDNA) strands, which function as kinematic joints. The design of kinematic joints including revolute, prismatic, cylindrical, universal, and spherical is presented. The steps as well as necessary software or experimental tools for designing DOM with DNA origami links and joints are detailed. To demonstrate the designs, we presented the designs of Bennett four-bar and crank–slider linkages. Finally, a list of technical challenges such as design automation and computational modeling are presented. These challenges could also be opportunities for mechanism and robotics community to apply well-developed kinematic theories and computational tools to the design of nanorobots and nanomachines.

References

References
1.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
2001
,
Mechanism Design: Analysis and Synthesis
,
4th ed.
,
Prentice Hall
, Englewood Cliffs, NJ.
2.
Chirikjian
,
G. S.
,
Kazerounian
,
K.
, and
Mavroidis
,
C.
,
2005
, “
Analysis and Design of Protein Based Nanodevices: Challenges and Opportunities in Mechanical Design
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
695
698
.
3.
Chirikjian
,
G. S.
,
2001
, “
Conformational Statistics of Macromolecules Using Generalized Convolution
,”
Comput. Theor. Polym. Sci.
,
11
(
2
), pp.
143
153
.
4.
Kazerounian
,
K.
,
2004
, “
From Mechanisms and Robotics to Protein Conformation and Drug Design
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
40
45
.
5.
Mavroidis
,
C.
, and
Dubey
,
A.
,
2004
, “
Bio-Nanorobotics: State of the Art and Future Challenges
,”
The Biomedical Engineering Handbook
,
3rd ed.
,
M. L.
Yarmush
, ed.,
CRC Press
, Boca Raton, FL.
6.
Hamdi
,
M.
, and
Ferreira
,
A.
,
2009
, “
Multiscale Design and Modeling of Protein-Based Nanomechanisms for Nanorobotics
,”
Int. J. Rob. Res.
,
28
(
4
), pp.
436
449
.
7.
Sharma
,
G.
,
Mavroidis
,
C.
,
Rege
,
K.
,
Yarmush
,
M. L.
, and
Budil
,
D.
,
2009
, “
Computational Studies of a Protein-Based Nanoactuator for Nanogripping Applications
,”
Int. J. Rob. Res.
,
28
(
4
), pp.
421
435
.
8.
Marras
,
A. E.
,
Zhou
,
L.
,
Su
,
H.-J.
, and
Castro
,
C. E.
,
2015
, “
Programmable Motion of DNA Origami Mechanisms
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
3
), pp.
713
718
.
9.
Castro
,
C. E.
,
Kilchherr
,
F.
,
Kim
,
D.-N.
,
Shiao
,
E. L.
,
Wauer
,
T.
,
Wortmann
,
P.
,
Bathe
,
M.
, and
Dietz
,
H.
,
2011
, “
A Primer to Scaffolded DNA Origami
,”
Nat. Methods
,
8
(
3
), pp.
221
229
.
10.
Rothemund
,
P. W. K.
,
2006
, “
Folding DNA to Create Nanoscale Shapes and Patterns
,”
Nature
,
440
(
7082
), pp.
297
302
.
11.
Douglas
,
S. M.
,
Dietz
,
H.
,
Liedl
,
T.
,
Högberg
,
B.
,
Graf
,
F.
, and
Shih
,
W. M.
,
2009
, “
Self-Assembly of DNA into Nanoscale Three-Dimensional Shapes
,”
Nature
,
459
(
7245
), pp.
414
418
.
12.
Andersen
,
E. S.
,
Dong
,
M.
,
Nielsen
,
M. M.
,
Jahn
,
K.
,
Subramani
,
R.
,
Mamdouh
,
W.
,
Golas
,
M. M.
,
Sander
,
B.
,
Stark
,
H.
,
Oliveira
,
C. L. P.
,
Pedersen
,
J. S.
,
Birkedal
,
V.
,
Besenbacher
,
F.
,
Gothelf
,
K. V.
, and
Kjems
,
J.
,
2009
, “
Self-Assembly of a Nanoscale DNA Box With a Controllable Lid
,”
Nature
,
459
(
7243
), pp.
73
76
.
13.
Han
,
D.
,
Pal
,
S.
,
Nangreave
,
J.
,
Deng
,
Z.
,
Liu
,
Y.
, and
Yan
,
H.
,
2011
, “
DNA Origami With Complex Curvatures in Three-Dimensional Space
,”
Science
,
332
(
6027
), pp.
342
346
.
14.
Iinuma
,
R.
,
Ke
,
Y.
,
Jungmann
,
R.
,
Schlichthaerle
,
T.
,
Woehrstein
,
J. B.
, and
Yin
,
P.
,
2014
, “
Polyhedra Self-Assembled From DNA Tripods and Characterized With 3D DNA-PAINT
,”
Science
,
344
(
6179
), pp.
65
69
.
15.
Smith
,
D. M.
,
Schüller
,
V.
,
Forthmann
,
C.
,
Schreiber
,
R.
,
Tinnefeld
,
P.
, and
Liedl
,
T.
,
2011
, “
A Structurally Variable Hinged Tetrahedron Framework From DNA Origami
,”
J. Nucleic Acids
,
2011
, p.
e360954
.
16.
Langecker
,
M.
,
Arnaut
,
V.
,
List
,
J.
, and
Simmel
,
F. C.
,
2014
, “
DNA Nanostructures Interacting With Lipid Bilayer Membranes
,”
Acc. Chem. Res.
,
47
(
6
), pp.
1807
1815
.
17.
Benson
,
E.
,
Mohammed
,
A.
,
Gardell
,
J.
,
Masich
,
S.
,
Czeizler
,
E.
,
Orponen
,
P.
, and
Högberg
,
B.
,
2015
, “
DNA Rendering of Polyhedral Meshes at the Nanoscale
,”
Nature
,
523
(
7561
), pp.
441
444
.
18.
Matthies
,
M.
,
Agarwal
,
N. P.
, and
Schmidt
,
T. L.
,
2016
, “
Design and Synthesis of Triangulated DNA Origami Trusses
,”
Nano Lett.
,
16
(
3
), pp.
2108
2113
.
19.
Liedl
,
T.
,
Högberg
,
B.
,
Tytell
,
J.
,
Ingber
,
D. E.
, and
Shih
,
W. M.
,
2010
, “
Self-Assembly of Three-Dimensional Prestressed Tensegrity Structures From DNA
,”
Nat. Nanotechnol.
,
5
(
7
), pp.
520
524
.
20.
Said
,
H.
,
Schüller
,
V. J.
,
Eber
,
F. J.
,
Wege
,
C.
,
Liedl
,
T.
, and
Richert
,
C.
,
2013
, “
M1.3—A Small Scaffold for DNA Origami
,”
Nanoscale
,
5
(
1
), pp.
284
290
.
21.
Marchi
,
A. N.
,
Saaem
,
I.
,
Vogen
,
B. N.
,
Brown
,
S.
, and
LaBean
,
T. H.
,
2014
, “
Toward Larger DNA Origami
,”
Nano Lett.
,
14
(
10
), pp.
5740
5747
.
22.
Kick
,
B.
,
Praetorius
,
F.
,
Dietz
,
H.
, and
Weuster-Botz
,
D.
,
2015
, “
Efficient Production of Single-Stranded Phage DNA as Scaffolds for DNA Origami
,”
Nano Lett.
,
15
(
7
), pp.
4672
4676
.
23.
Zhang
,
H.
,
Chao
,
J.
,
Pan
,
D.
,
Liu
,
H.
,
Huang
,
Q.
, and
Fan
,
C.
,
2012
, “
Folding Super-Sized DNA Origami With Scaffold Strands From Long-Range PCR
,”
Chem. Commun.
,
48
(
51
), pp.
6405
6407
.
24.
Veneziano
,
R.
,
Ratanalert
,
S.
,
Zhang
,
K.
,
Zhang
,
F.
,
Yan
,
H.
,
Chiu
,
W.
, and
Bathe
,
M.
,
2016
, “
Designer Nanoscale DNA Assemblies Programmed From the Top Down
,”
Science
,
352
(6293), p.
aaf4388
.
25.
Brown
,
S.
,
Majikes
,
J.
,
Martnez
,
A.
,
Girn
,
T. M.
,
Fennell
,
H.
,
Samano
,
E. C.
, and
LaBean
,
T. H.
,
2015
, “
An Easy-to-Prepare Mini-Scaffold for DNA Origami
,”
Nanoscale
,
7
(
40
), pp.
16621
16624
.
26.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
1991
,
Mechanism Design: Analysis and Synthesis
,
4th ed.
, Vol.
1
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
27.
McCarthy
,
J. M.
,
2000
,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
28.
Murphy
,
M.
,
Rasnik
,
I.
,
Cheng
,
W.
,
Lohman
,
T.
, and
Ha
,
T.
,
2004
, “
Probing Single-Stranded DNA Conformational Flexibility Using Fluorescence Spectroscopy
,”
Biophys. J.
,
86
(
4
), pp.
2530
2537
.
29.
Wang
,
M.
,
Yin
,
H.
,
Landick
,
R.
,
Gelles
,
J.
, and
Block
,
S.
,
1997
, “
Stretching DNA With Optical Tweezers
,”
Biophys. J.
,
72
(
3
), pp.
1335
1346
.
30.
Ke
,
Y.
,
Douglas
,
S. M.
,
Liu
,
M.
,
Sharma
,
J.
,
Cheng
,
A.
,
Leung
,
A.
,
Liu
,
Y.
,
Shih
,
W. M.
, and
Yan
,
H.
,
2009
, “
Multilayer DNA Origami Packed on a Square Lattice
,”
J. Am. Chem. Soc.
,
131
(
43
), pp.
15903
15908
.
31.
Dietz
,
H.
,
Douglas
,
S. M.
, and
Shih
,
W. M.
,
2009
, “
Folding DNA Into Twisted and Curved Nanoscale Shapes
,”
Science
,
325
(
5941
), pp.
725
730
.
32.
Kim
,
D.-N.
,
Kilchherr
,
F.
,
Dietz
,
H.
, and
Bathe
,
M.
,
2012
, “
Quantitative Prediction of 3D Solution Shape and Flexibility of Nucleic Acid Nanostructures
,”
Nucleic Acids Res.
,
40
(
7
), pp.
2862
2868
.
33.
Douglas
,
S. M.
,
Marblestone
,
A. H.
,
Teerapittayanon
,
S.
,
Vazquez
,
A.
,
Church
,
G. M.
, and
Shih
,
W. M.
,
2009
, “
Rapid Prototyping of 3D DNA-Origami Shapes With caDNAno
,”
Nucleic Acids Res.
,
37
(
15
), pp.
5001
5006
.
34.
Hatch
,
K.
,
Danilowicz
,
C.
,
Coljee
,
V.
, and
Prentiss
,
M.
,
2008
, “
Demonstration that the Shear Force Required to Separate Short Double-Stranded DNA Does Not Increase Significantly With Sequence Length for Sequences Longer Than 25 Base Pairs
,”
Phys. Rev. E
,
78
(
1
), p.
011920
.
35.
Woodside
,
M. T.
,
Behnke-Parks
,
W. M.
,
Larizadeh
,
K.
,
Travers
,
K.
,
Herschlag
,
D.
, and
Block
,
S. M.
,
2006
, “
Nanomechanical Measurements of the Sequence-Dependent Folding Landscapes of Single Nucleic Acid Hairpins
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
16
), pp.
6190
6195
.
36.
Marras
,
A. E.
,
Zhou
,
L.
,
Kolliopoulos
,
V.
,
Su
,
H.-J.
, and
Castro
,
C. E.
,
2016
, “
Directing Folding Pathways for Multi-Component DNA Origami Nanostructures With Complex Topology
,”
New J. Phys.
,
18
(
5
), p.
055005
.
37.
Sobczak
,
J.-P. J.
,
Martin
,
T. G.
,
Gerling
,
T.
, and
Dietz
,
H.
,
2012
, “
Rapid Folding of DNA Into Nanoscale Shapes at Constant Temperature
,”
Science
,
338
(
6113
), pp.
1458
1461
.
38.
Su
,
H.-J.
,
Castro
,
C. E.
,
Marras
,
A. E.
, and
Hudoba
,
M.
,
2012
, “
Design and Fabrication of DNA Origami Mechanisms and Machines
,”
Advances in Reconfigurable Mechanisms and Robots I
,
J. S.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.,
Springer
,
London
, pp.
487
500
.
39.
Yurke
,
B.
,
Turberfield
,
A. J.
,
Mills
,
A. P.
,
Simmel
,
F. C.
, and
Neumann
,
J. L.
,
2000
, “
A DNA-Fuelled Molecular Machine Made of DNA
,”
Nature
,
406
(
6796
), pp.
605
608
.
40.
Gerling
,
T.
,
Wagenbauer
,
K. F.
,
Neuner
,
A. M.
, and
Dietz
,
H.
,
2015
, “
Dynamic DNA Devices and Assemblies Formed by Shape-Complementary, Non-Base Pairing 3D Components
,”
Science
,
347
(
6229
), pp.
1446
1452
.
41.
Zhou
,
L.
,
Marras
,
A. E.
,
Su
,
H.-J.
, and
Castro
,
C. E.
,
2014
, “
DNA Origami Compliant Nanostructures With Tunable Mechanical Properties
,”
ACS Nano
,
8
(
1
), pp.
27
34
.
42.
Zhou
,
L.
,
Marras
,
A. E.
,
Su
,
H.-J.
, and
Castro
,
C. E.
,
2015
, “
Direct Design of an Energy Landscape With Bi-Stable DNA Origami Mechanisms
,”
Nano Lett.
,
15
(
3
), p.
1815–1821
.
43.
Andersen
,
E. S.
,
Dong
,
M.
,
Nielsen
,
M. M.
,
Jahn
,
K.
,
Lind-Thomsen
,
A.
,
Mamdouh
,
W.
,
Gothelf
,
K. V.
,
Besenbacher
,
F.
, and
Kjems
,
J.
,
2008
, “
DNA Origami Design of Dolphin-Shaped Structures With Flexible Tails
,”
ACS Nano
,
2
(
6
), pp.
1213
1218
.
44.
Zhou
,
L.
,
Su
,
H.-J.
,
Marras
,
A. E.
,
Huang
,
C.-M.
, and
Castro
,
C. E.
,
2017
, “
Projection Kinematic Analysis of DNA Origami Mechanisms Based on a Two-Dimensional TEM Image
,”
Mech. Mach. Theory
,
109
, pp.
22
38
.
45.
Zhang
,
L.
, and
Ren
,
G.
,
2012
, “
IPET and FETR: Experimental Approach for Studying Molecular Structure Dynamics by Cryo-Electron Tomography of a Single-Molecule Structure
,”
PLoS One
,
7
(
1
), p.
e30249
.
46.
Du
,
J.
,
,
W.
,
Wu
,
S.
,
Cheng
,
Y.
, and
Gouaux
,
E.
,
2015
, “
Glycine Receptor Mechanism Elucidated by Electron Cryo-Microscopy
,”
Nature
,
526
(
7572
), pp.
224
229
.
47.
Su
,
H.-J.
, and
Castro
,
C. E.
,
2016
, “
The Rise of DNA Nanorobots
,”
Mech. Eng. Mag.
,
138
(
8
), pp.
45
49
.
48.
Douglas
,
S. M.
,
Bachelet
,
I.
, and
Church
,
G. M.
,
2012
, “
A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads
,”
Science
,
335
(
6070
), pp.
831
834
.
49.
Liu
,
M.
,
Fu
,
J.
,
Hejesen
,
C.
,
Yang
,
Y.
,
Woodbury
,
N. W.
,
Gothelf
,
K.
,
Liu
,
Y.
, and
Yan
,
H.
,
2013
, “
A DNA Tweezer-Actuated Enzyme Nanoreactor
,”
Nat. Commun.
,
4
, p.
2127
.
You do not currently have access to this content.