An atlas of 98 microgrippers that recently appeared in Literature is herein presented by using four different forms: (a) a restyled layout of the original mechanical structure, (b) its corresponding pseudorigid body model (PRBM), (c) its kinematic chain, and finally, (d) its related graph. Homogeneity in functional sketching (a) is assumed to be greatly helpful to understand how these grippers work and what are the most significant differences between them. Therefore, a unified and systematic set of aesthetics and proportionality criteria have been adopted. Analogously, unified criteria for obtaining pseudorigid (b), kinematic (c), and graph (d) representations have been also used, which made the atlas easy to be read and inspected. The distinction among lumped and distributed compliance has been also accepted to develop the structure of the atlas. A companion paper has been prepared to present a survey on the variety of operational strategies that are used in these microgrippers.

References

References
1.
Castillo
,
J.
,
Dimaki
,
M.
, and
Svendsen
,
W. E.
,
2009
, “
Manipulation of Biological Samples Using Micro and Nano Techniques
,”
Integr. Biol.
,
1
(
1
), pp.
30
42
.
2.
Bargiel
,
S.
,
Rabenorosoa
,
K.
,
Clevy
,
C.
,
Gorecki
,
C.
, and
Lutz
,
P.
,
2010
, “
Towards Micro-Assembly of Hybrid Moems Components on a Reconfigurable Silicon Free-Space Micro-Optical Bench
,”
J. Micromech. Microeng.
,
20
(
4
), p.
045012
.
3.
Bargiel
,
S.
,
Rabenorosoa
,
K.
,
Mascaro
,
J.-P.
,
Clévy
,
C.
,
Gorecki
,
C.
, and
Lutz
,
P.
,
2010
, “
Technology Platform for Hybrid Integration of Moems on Reconfigurable Silicon Micro-Optical Table
,”
Procedia Eng.
,
5
, pp.
428
431
.
4.
Brehm-Stecher
,
B. F.
, and
Johnson
,
E. A.
,
2004
, “
Single-Cell Microbiology: Tools, Technologies, and Applications
,”
Microbiol. Mol. Biol. Rev.
,
68
(
3
), pp.
538
559
.
5.
Altschuler
,
S. J.
, and
Wu
,
L. F.
,
2010
, “
Cellular Heterogeneity: Do Differences Make a Difference?
,”
Cell
,
141
(
4
), pp.
559
563
.
6.
Malter
,
H.
,
2016
, “
Micromanipulation in Assisted Reproductive Technology
,”
Reprod. BioMed. Online
,
32
(
4
), pp.
339
347
.
7.
McAllister
,
D. V.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
,
2000
, “
Microfabricated Microneedles for Gene and Drug Delivery
,”
Annu. Rev. Biomed. Eng.
,
2
(
1
), pp.
289
313
.
8.
Kimura
,
Y.
, and
Yanagimachi
,
R.
,
1995
, “
Intracytoplasmic Sperm Injection in the Mouse
,”
Biol. Reprod.
,
52
(
4
), pp.
709
720
.
9.
Garcés-Schröder
,
M.
,
Leester-Schädel
,
M.
,
Schulz
,
M.
,
Böl
,
M.
, and
Dietzel
,
A.
,
2015
, “
Micro-Gripper: A New Concept for a Monolithic Single-Cell Manipulation Device
,”
Sens. Actuators, A
,
236
, pp.
130
139
.
10.
Ingber
,
D. E.
,
2006
, “
Cellular Mechanotransduction: Putting All the Pieces Together Again
,”
FASEB J.
,
20
(
7
), pp.
811
827
.
11.
Moeendarbary
,
E.
, and
Harris
,
A. R.
,
2014
, “
Cell Mechanics: Principles, Practices, and Prospects
,”
Wiley Interdiscip. Rev.: Syst. Biol. Med.
,
6
(
5
), pp.
371
388
.
12.
Park
,
Y.
,
Best
,
C. A.
,
Badizadegan
,
K.
,
Dasari
,
R. R.
,
Feld
,
M. S.
,
Kuriabova
,
T.
,
Henle
,
M. L.
,
Levine
,
A. J.
, and
Popescu
,
G.
,
2010
, “
Measurement of Red Blood Cell Mechanics During Morphological Changes
,”
Proc. Natl. Acad. Sci.
,
107
(
15
), pp.
6731
6736
.
13.
Arai
,
F.
,
Andou
,
D.
,
Nonoda
,
Y.
,
Fukuda
,
T.
,
Iwata
,
H.
, and
Itoigawa
,
K.
,
1998
, “
Integrated Microendeffector for Micromanipulation
,”
IEEE/ASME Trans. Mechatron.
,
3
(
1
), pp.
17
23
.
14.
Carrozza
,
M. C.
,
Eisinberg
,
A.
,
Menciassi
,
A.
,
Campolo
,
D.
,
Micera
,
S.
, and
Dario
,
P.
,
2000
, “
Towards a Force-Controlled Microgripper for Assembling Biomedical Microdevices
,”
J. Micromech. Microeng.
,
10
(
2
), p.
271
.
15.
Pérez
,
R.
,
Agnus
,
J.
,
Clévy
,
C.
,
Hubert
,
A.
, and
Chaillet
,
N.
,
2005
, “
Modeling, Fabrication, and Validation of a High-Performance 2-DoF Piezoactuator for Micromanipulation
,”
IEEE/ASME Trans. Mechatron.
,
10
(
2
), pp.
161
171
.
16.
Zhou
,
L.
,
Kahn
,
J.
, and
Pister
,
K.
,
2003
, “
Corner-Cube Retroreflectors Based on Structure-Assisted Assembly for Free-Space Optical Communication
,”
J. Microelectromech. Syst.
,
12
(
3
), pp.
233
242
.
17.
Dechev
,
N.
,
Cleghorn
,
W.
, and
Mills
,
J.
,
2004
, “
Microassembly of 3-D Microstructures Using a Compliant, Passive Microgripper
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
176
189
.
18.
Das
,
A. N.
,
Sin
,
J.
,
Popa
,
D. O.
, and
Stephanou
,
H. E.
,
2008
, “
On the Precision Alignment and Hybrid Assembly Aspects in Manufacturing of a Microspectrometer
,”
IEEE International Conference on Automation Science and Engineering
(
CASE
), Arlington, VA, Aug. 23–26, pp.
959
966
.
19.
Cecil
,
J.
,
Vasquez
,
D.
, and
Powell
,
D.
,
2005
, “
A Review of Gripping and Manipulation Techniques for Micro-Assembly Applications
,”
Int. J. Prod. Res.
,
43
(
4
), pp.
819
828
.
20.
Cecil
,
J.
,
Powell
,
D.
, and
Vasquez
,
D.
,
2007
, “
Assembly and Manipulation of Micro Devices—a State of the Art Survey
,”
Rob. Comput.-Integr. Manuf.
,
23
(
5
), pp.
580
588
.
21.
Rabenorosoa
,
K.
,
Clevy
,
C.
,
Chen
,
Q.
, and
Lutz
,
P.
,
2012
, “
Study of Forces During Microassembly Tasks Using Two-Sensing-Fingers Grippers
,”
IEEE/ASME Trans. Mechatron.
,
17
(
5
), pp.
811
821
.
22.
Fantoni
,
G.
, and
Porta
,
M.
,
2008
, “
A Critical Review of Releasing Strategies in Microparts Handling
,”
Micro-Assembly Technologies and Applications
(IFIP—International Federation for Information Processing, Vol.
260
),
S.
Ratchev
and
S.
Koelemeijer
, eds.,
Springer US
,
Boston, MA
, pp.
223
234
.
23.
Denisyuk
,
A.
,
Krasavin
,
A.
,
Komissarenko
,
F.
, and
Mukhin
,
I.
,
2014
, “
Mechanical, Electrostatic, and Electromagnetic Mechanical, Electrostatic, and Electromagnetic Manipulation of Microobjects and Nanoobjects in Electron Microscopes
,”
Adv. Imaging Electron Phys.
,
186
, pp.
101
140
.
24.
Wei
,
Y.
, and
Xu
,
Q.
,
2015
, “
An Overview of Micro-Force Sensing Techniques
,”
Sens. Actuators, A
,
234
, pp.
359
374
.
25.
Boudaoud
,
M.
, and
Régnier
,
S.
,
2014
, “
An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems
,”
Int. J. Adv. Rob. Syst.
,
11
(
1
), pp.
1
15
.
26.
Mekid
,
S.
,
Bashmal
,
S.
, and
Ouakad
,
H. M.
,
2016
, “
Nanoscale Manipulators: Review of Conceptual Designs Through Recent Patents
,”
Recent Pat. Nanotechnol.
,
10
(
1
), pp.
44
58
.
27.
Jia
,
Y.
, and
Xu
,
Q.
,
2013
, “
MEMS Microgripper Actuators and Sensors: The State-of-the-Art Survey
,”
Recent Pat. Mech. Eng.
,
6
(
2
), pp.
132
142
.
28.
Nikoobin
,
A.
, and
Niaki
,
M. H.
,
2012
, “
Deriving and Analyzing the Effective Parameters in Microgrippers Performance
,”
Sci. Iran.
,
19
(
6
), pp.
1554
1563
.
29.
Howell
,
L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
30.
Lyon
,
S.
,
Erickson
,
P.
,
Evans
,
M.
, and
Howell
,
L.
,
1999
, “
Prediction of the First Modal Frequency of Compliant Mechanisms Using the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
309
313
.
31.
Edwards
,
B.
,
Jensen
,
B.
, and
Howell
,
L.
,
2001
, “
A Pseudo-Rigid-Body Model for Initially-Curved Pinned-Pinned Segments Used in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
464
468
.
32.
Jensen
,
B.
, and
Howell
,
L.
,
2003
, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
701
708
.
33.
Howell
,
L.
,
Dibiasio
,
C.
,
Cullinan
,
M.
,
Panas
,
R.
, and
Culpepper
,
M.
,
2010
, “
A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
034501
.
34.
Halverson
,
P.
,
Bowden
,
A.
, and
Howell
,
L.
,
2011
, “
A Pseudo-Rigid-Body Model of the Human Spine to Predict Implant-Induced Changes on Motion
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041008
.
35.
Grübler
,
M. F.
,
1917
,
Getriebelehre: Eine Theorie des Zwanglaufes und der Ebenen Mechanismen
,
Springer-Verlag
,
Berlin
.
36.
Dochshanov
,
A.
,
Verotti
,
M.
, and
Belfiore
,
N. P.
,
2016
, “
A Comprehensive Survey on Microgrippers Design: Operational Strategy
,”
ASME J. Mech. Des.
(in press).
37.
Belfiore
,
N. P.
,
2000
, “
Distributed Databases for the Development of Mechanisms Topology
,”
Mech. Mach. Theory
,
35
(
12
), pp.
1727
1744
.
38.
Belfiore
,
N. P.
,
2000
, “
Brief Note on the Concept of Planarity for Kinematic Chains
,”
Mech. Mach. Theory
,
35
(
12
), pp.
1745
1750
.
39.
Belfiore
,
N. P.
,
1993
, “
Atlas of Remote Actuated Bevel Gear Wrist Mechanisms of up to Nine Links
,”
Int. J. Rob. Res.
,
12
(
5
), pp.
448
459
.
40.
Belfiore
,
N. P.
, and
Pennestrì
,
E.
,
1997
, “
An Atlas of Linkage-Type Robotic Grippers
,”
Mech. Mach. Theory
,
32
(
7
), pp.
811
833
.
41.
Pennestrí
,
E.
, and
Belfiore
,
N.
,
2015
, “
On Crossley's Contribution to the Development of Graph Based Algorithms for the Analysis of Mechanisms and Gear Trains
,”
Mech. Mach. Theory
,
89
, pp.
92
106
.
42.
Tsai
,
Y.-C.
,
Lei
,
S. H.
, and
Sudin
,
H.
,
2005
, “
Design and Analysis of Planar Compliant Microgripper Based on Kinematic Approach
,”
J. Micromech. Microeng.
,
15
(
1
), p.
143
.
43.
Sun
,
X.
,
Chen
,
W.
,
Fatikow
,
S.
,
Tian
,
Y.
,
Zhou
,
R.
,
Zhang
,
J.
, and
Mikczinski
,
M.
,
2015
, “
A Novel Piezo-Driven Microgripper With a Large Jaw Displacement
,”
Microsyst. Technol.
,
21
(
4
), pp.
931
942
.
44.
Bellouard
,
Y.
,
2010
,
Microrobotics: Methods and Applications
,
CRC Press
,
Boca Raton, FL
.
45.
Bazaz
,
S. A.
,
Khan
,
F.
, and
Shakoor
,
R. I.
,
2011
, “
Design, Simulation and Testing of Electrostatic SOI MUMPs Based Microgripper Integrated With Capacitive Contact Sensor
,”
Sens. Actuators, A
,
167
(
1
), pp.
44
53
.
46.
Beyeler
,
F.
,
Neild
,
A.
,
Oberti
,
S.
,
Bell
,
D. J.
,
Sun
,
Y.
,
Dual
,
J.
, and
Nelson
,
B. J.
,
2007
, “
Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field
,”
J. Microelectromech. Syst.
,
16
(
1
), pp.
7
15
.
47.
Verotti
,
M.
,
2016
, “
Analysis of the Center of Rotation in Primitive Flexures: Uniform Cantilever Beams With Constant Curvature
,”
Mech. Mach. Theory
,
97
, pp.
29
50
.
48.
Belfiore
,
N.
, and
Simeone
,
P.
,
2013
, “
Inverse Kinetostatic Analysis of Compliant Four-Bar Linkages
,”
Mech. Mach. Theory
,
69
, pp.
350
372
.
49.
Verotti
,
M.
,
Crescenzi
,
R.
,
Balucani
,
M.
, and
Belfiore
,
N.
,
2015
, “
MEMS-Based Conjugate Surfaces Flexure Hinge
,”
ASME J. Mech. Des.
,
137
(
1
), p.
012301
.
50.
Balucani
,
M.
,
Belfiore
,
N. P.
,
Crescenzi
,
R.
, and
Verotti
,
M.
,
2011
, “
The Development of a MEMS/NEMS-Based 3 D.O.F. Compliant Micro Robot
,” IEEE 19th International Workshop on Robotics in Alpe-Adria-Danube Region (
RAAD
), Balatonfüred, Hungary, June 24–26,
12
(
1
), pp.
3
10
.
51.
Belfiore
,
N. P.
,
Verotti
,
M.
,
Crescenzi
,
R.
, and
Balucani
,
M.
,
2013
, “
Design, Optimization and Construction of MEMS-Based Micro Grippers for Cell Manipulation
,”
IEEE International Conference on System Science and Engineering
(
ICSSE 2013
), Budapest, Hungary, July 4–6, pp.
105
110
.
52.
Belfiore
,
N. P.
,
Broggiato
,
G. B.
,
Verotti
,
M.
,
Balucani
,
M.
,
Crescenzi
,
R.
,
Bagolini
,
A.
,
Bellutti
,
P.
, and
Boscardin
,
M.
,
2015
, “
Simulation and Construction of a MEMS CSFH Based Microgripper
,”
Int. J. Mech. Control
,
16
(
1
), pp.
21
30
.
53.
Cecchi
,
R.
,
Verotti
,
M.
,
Capata
,
R.
,
Dochshanov
,
A.
,
Broggiato
,
G.
,
Crescenzi
,
R.
,
Balucani
,
M.
,
Natali
,
S.
,
Razzano
,
G.
,
Lucchese
,
F.
,
Bagolini
,
A.
,
Bellutti
,
P.
,
Sciubba
,
E.
, and
Belfiore
,
N. P.
,
2015
, “
Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison
,”
Micromachines
,
6
(
11
), pp.
1710
1728
.
54.
Yong
,
Y. K.
,
Lu
,
T.-F.
, and
Handley
,
D. C.
,
2008
, “
Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations
,”
Precis. Eng.
,
32
(
2
), pp.
63
70
.
55.
Lobontiu
,
N.
,
Garcia
,
E.
,
Goldfarb
,
M.
, and
Paine
,
J. S.
,
2001
, “
Corner-Filleted Flexure Hinges
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
346
352
.
56.
Lobontiu
,
N.
,
Paine
,
J. S.
,
O'Malley
,
E.
, and
Samuelson
,
M.
,
2002
, “
Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Characterization Based on Compliance Closed-Form Equations
,”
Precis. Eng.
,
26
(
2
), pp.
183
192
.
57.
Smith
,
S. T.
,
Badami
,
V. G.
,
Dale
,
J. S.
, and
Xu
,
Y.
,
1997
, “
Elliptical Flexure Hinges
,”
Rev. Sci. Instrum.
,
68
(
3
), pp.
1474
1483
.
58.
Chen
,
G.-M.
,
Jia
,
J.-Y.
, and
Li
,
Z.-W.
,
2005
, “
On Hybrid Flexure Hinges
,”
IEEE Networking, Sensing and Control
, pp.
700
704
.
59.
Lee
,
V.
,
Gibert
,
J.
, and
Ziegert
,
J.
,
2014
, “
Hybrid Bi-Directional Flexure Joint
,”
Precis. Eng.
,
38
(
2
), pp.
270
278
.
60.
Trease
,
B. T.
,
Moon
,
Y.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
61.
Cannon
,
J. R.
, and
Howell
,
L. L.
,
2005
, “
A Compliant Contact-Aided Revolute Joint
,”
Mech. Mach. Theory
,
40
(
11
), pp.
1273
1293
.
62.
Moon
,
Y.-M.
,
2007
, “
Bio-Mimetic Design of Finger Mechanism With Contact Aided Compliant Mechanism
,”
Mech. Mach. Theory
,
42
(
5
), pp.
600
611
.
63.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Su
,
H.
,
2009
, “
The Modeling of Cartwheel Flexural Hinges
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1900
1909
.
64.
Henein
,
S.
,
Spanoudakis
,
P.
,
Droz
,
S.
,
Myklebust
,
L.
, and
Onillon
,
E.
,
2003
, “
Flexure Pivot for Aerospace Mechanisms
,”
Tenth European Space Mechanisms and Tribology Symposium
(
ESMATS
), San Sebastián, Spain, Sept. 24–26, pp.
285
288
.
65.
Pei
,
X.
, and
Yu
,
J.
,
2011
, “
ADLIF: A New Large-Displacement Beam-Based Flexure Joint
,”
Mech. Sci.
,
2
(
2
), pp.
183
188
.
66.
Belfiore
,
N.
,
Verotti
,
M.
,
Di Giamberardino
,
P.
, and
Rudas
,
I.
,
2012
, “
Active Joint Stiffness Regulation to Achieve Isotropic Compliance in the Euclidean Space
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041010
.
67.
Verotti
,
M.
, and
Belfiore
,
N. P.
,
2016
, “
Isotropic Compliance in E(3): Feasibility and Workspace Mapping
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061005
.
68.
Verotti
,
M.
,
Masarati
,
P.
,
Morandini
,
M.
, and
Belfiore
,
N.
,
2016
, “
Isotropic Compliance in the Special Euclidean Group SE(3)
,”
Mech. Mach. Theory
,
98
, pp.
263
281
.
69.
Belfiore
,
N.
,
Di Giamberardino
,
P.
,
Rudas
,
I.
, and
Verotti
,
M.
,
2011
, “
Isotropy in any RR Planar Dyad Under Active Joint Stiffness Regulation
,” IEEE 19th International Workshop on Robotics in Alpe-Adria-Danube Region (
RAAD
), Balatonfüred, Hungary, June 24–26, pp.
75
81
.
70.
Verotti
,
M.
,
Dochshanov
,
A.
, and
Belfiore
,
N.
,
2016
, “
Compliance Synthesis of CSFH MEMS-Based Microgrippers
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022301
.
71.
Belfiore
,
N. P.
, and
Pennestrì
,
E.
,
1994
, “
Automatic Sketching of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
29
(
1
), pp.
177
193
.
72.
Ai
,
W.
, and
Xu
,
Q.
,
2014
, “
New Structural Design of a Compliant Gripper Based on the Scott-Russell Mechanism
,”
Int. J. Adv. Rob. Syst.
,
11
(
192
), pp.
1
10
.
73.
Sun
,
X.
,
Chen
,
W.
,
Tian
,
Y.
,
Fatikow
,
S.
,
Zhou
,
R.
,
Zhang
,
J.
, and
Mikczinski
,
M.
,
2013
, “
A Novel Flexure-Based Microgripper With Double Amplification Mechanisms for Micro/Nano Manipulation
,”
Rev. Sci. Instrum.
,
84
(
8
), p.
085002
.
74.
Zhang
,
D.
,
Zhang
,
Z.
,
Gao
,
Q.
,
Xu
,
D.
, and
Liu
,
S.
,
2015
, “
Development of a Monolithic Compliant SPCA-Driven Micro-Gripper
,”
Mechatronics
,
25
, pp.
37
43
.
75.
Lu
,
K.
,
Zhang
,
J.
,
Chen
,
W.
,
Jiang
,
J.
, and
Chen
,
W.
,
2014
, “
A Monolithic Microgripper With High Efficiency and High Accuracy for Optical Fiber Assembly
,”
IEEE Ninth Conference on Industrial Electronics and Applications
(
ICIEA
), Hangzhou, China, June 9–11, pp.
1942
1947
.
76.
Wang
,
D.
,
Yang
,
Q.
, and
Dong
,
H.
,
2013
, “
A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
138
147
.
77.
Zubir
,
M. N. M.
,
Shirinzadeh
,
B.
, and
Tian
,
Y.
,
2009
, “
A New Design of Piezoelectric Driven Compliant-Based Microgripper for Micromanipulation
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2248
2264
.
78.
Xu
,
Q.
,
2012
, “
Mechanism Design and Analysis of a Novel 2-DOF Compliant Modular Microgripper
,”
Seventh IEEE Conference on Industrial Electronics and Applications
(
ICIEA
), Singapore, July 18–20, pp.
1966
1971
.
79.
Xu
,
Q.
,
2013
, “
A New Compliant Microgripper With Integrated Position and Force Sensing
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, Australia, July 9–12, pp.
591
596
.
80.
Kim
,
D.-H.
,
Lee
,
M. G.
,
Kim
,
B.
, and
Sun
,
Y.
,
2005
, “
A Superelastic Alloy Microgripper With Embedded Electromagnetic Actuators and Piezoelectric Force Sensors: A Numerical and Experimental Study
,”
Smart Mater. Struct.
,
14
(
6
), p.
1265
.
81.
Zubir
,
M. N. M.
, and
Shirinzadeh
,
B.
,
2009
, “
Development of a High Precision Flexure-Based Microgripper
,”
Precis. Eng.
,
33
(
4
), pp.
362
370
.
82.
Cho
,
Y. S.
,
Pak
,
Y.
,
Han
,
C. S.
, and
Ha
,
S. K.
,
2000
, “
Five-Port Equivalent Electric Circuit of Piezoelectric Bimorph Beam
,”
Sens. Actuators, A
,
84
(
1–2
), pp.
140
148
.
83.
Takagi
,
K.
,
Li
,
J.-F.
,
Yokoyama
,
S.
,
Watanabe
,
R.
,
Almajid
,
A.
, and
Taya
,
M.
,
2002
, “
Design and Fabrication of Functionally Graded PZT/PT Piezoelectric Bimorph Actuator
,”
Sci. Technol. Adv. Mater.
,
3
(
2
), pp.
217
224
.
84.
Taya
,
M.
,
Almajid
,
A. A.
,
Dunn
,
M.
, and
Takahashi
,
H.
,
2003
, “
Design of Bimorph Piezo-Composite Actuators With Functionally Graded Microstructure
,”
Sens. Actuators, A
,
107
(
3
), pp.
248
260
.
85.
Duan
,
Z.
, and
Wang
,
Q.
,
2005
, “
Development of a Novel High Precision Piezoelectric Linear Stepper Actuator
,”
Sens. Actuators, A
,
118
(
2
), pp.
285
291
.
86.
Shi
,
X.
,
Chen
,
W.
,
Zhang
,
J.
, and
Chen
,
W.
,
2013
, “
Design, Modeling, and Simulation of a 2-DOF Microgripper for Grasping and Rotating of Optical Fibers
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, Australia, July 9–12, pp.
1597
1602
.
87.
Cao
,
Q.
,
Lu
,
Q.
,
Xi
,
J.
,
Yan
,
J.
, and
Chu
,
C.
,
2011
, “
Modeling and Performance Analysis of Giant Magnetostrictive Microgripper With Flexure Hinge
,”
Computer and Computing Technologies in Agriculture IV
(IFIP Advances in Information and Communication Technology, Vol.
347
),
D.
Li
,
Y.
Liu
, and
Y.
Chen
, eds.,
Springer
,
Berlin
, pp.
237
245
.
88.
Kyung
,
J.
,
Ko
,
B.
,
Ha
,
Y.
, and
Chung
,
G.
,
2008
, “
Design of a Microgripper for Micromanipulation of Microcomponents Using SMA Wires and Flexible Hinges
,”
Sens. Actuators, A
,
141
(
1
), pp.
144
150
.
89.
Ballandras
,
S.
,
Basrour
,
S.
,
Robert
,
L.
,
Megtert
,
S.
,
Blind
,
P.
,
Rouillay
,
M.
,
Bernéde
,
P.
, and
Daniau
,
W.
,
1997
, “
Microgrippers Fabricated by the LIGA Technique
,”
Sens. Actuators, A
,
58
(
3
), pp.
265
272
.
90.
Chronis
,
N.
, and
Lee
,
L.
,
2004
, “
Polymer MEMS-Based Microgripper for Single Cell Manipulation
,”
17th IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS
), Maastricht, The Netherlands, Jan. 25–29, pp.
17
20
.
91.
Chronis
,
N.
, and
Lee
,
L. P.
,
2005
, “
Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution
,”
J. Microelectromech. Syst.
,
14
(
4
), pp.
857
863
.
92.
Jayaram
,
K.
, and
Joshi
,
S. S.
,
2010
, “
Development of a Flexure-Based, Force-Sensing Microgripper for Micro-Object Manipulation
,”
J. Micromech. Microeng.
,
20
(
1
), p.
015001
.
93.
Chang
,
R.
, and
Chen
,
C.
,
2007
, “
Using Microgripper for Adhesive Bonding in Automatic Microassembly System
,”
International Conference on Mechatronics and Automation
(
ICMA 2007
), Harbin, China, Aug. 5–8, pp.
440
445
.
94.
Chang
,
R.-J.
, and
Cheng
,
C.-Y.
,
2009
, “
Vision-Based Compliant-Joint Polymer Force Sensor Integrated With Microgripper for Measuring Gripping Force
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM 2009
), Singapore, July 14–17, pp.
18
23
.
95.
Alogla
,
A.
,
Scanlan
,
P.
,
Shu
,
W.
, and
Reuben
,
R.
,
2012
, “
A Scalable Syringe-Actuated Microgripper for Biological Manipulation
,”
Procedia Eng.
,
47
, pp.
882
885
.
96.
Menciassi
,
A.
,
Eisinberg
,
A.
,
Mazzoni
,
M.
, and
Dario
,
P.
,
2002
, “
A Sensorized mu;Electro Discharge Machined Superelastic Alloy Microgripper for Micromanipulation: Simulation and Characterization
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Lausanne, Switzerland, Sept. 30–Oct. 4, Vol.
2
, pp.
1591
1595
.
97.
Nah
,
S.
, and
Zhong
,
Z.
,
2007
, “
A Microgripper Using Piezoelectric Actuation for Micro-Object Manipulation
,”
Sens. Actuators, A
,
133
(
1
), pp.
218
224
.
98.
Millet
,
O.
,
Bernardoni
,
P.
,
Régnier
,
S.
,
Bidaud
,
P.
,
Tsitsiris
,
E.
,
Collard
,
D.
, and
Buchaillot
,
L.
,
2004
, “
Electrostatic Actuated Micro Gripper Using an Amplification Mechanism
,”
Sens. Actuators, A
,
114
(
2–3
), pp.
371
378
.
99.
Keller
,
C. G.
, and
Howe
,
R. T.
,
1997
, “
Hexsil Tweezers for Teleoperated Micro-Assembly
,”
IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems
(
MEMS'97
), Nagoya, Japan, Jan. 26–30, pp.
72
77
.
100.
Hoxhold
,
B.
, and
Büttgenbach
,
S.
,
2008
, “
Batch Fabrication of Micro Grippers With Integrated Actuators
,”
Microsyst. Technol.
,
14
(
12
), pp.
1917
1924
.
101.
Xu
,
Q.
,
2015
, “
Design and Development of a Novel Compliant Gripper With Integrated Position and Grasping/Interaction Force Sensing
,”
IEEE Trans. Autom. Sci. Eng.
,
PP
(
99
), pp.
1
14
.
102.
Xu
,
Q.
,
2015
, “
Design, Fabrication, and Testing of an Mems Microgripper With Dual-Axis Force Sensor
,”
IEEE Sens. J.
,
15
(
10
), pp.
6017
6026
.
103.
Chu
,
J.
,
Zhang
,
R.
, and
Chen
,
Z.
,
2011
, “
A Novel SU-8 Electrothermal Microgripper Based on the Type Synthesis of the Kinematic Chain Method and the Stiffness Matrix Method
,”
J. Micromech. Microeng.
,
21
(
5
), p.
054030
.
104.
Zhang
,
R.
,
Chu
,
J.
,
Wang
,
H.
, and
Chen
,
Z.
,
2013
, “
A Multipurpose Electrothermal Microgripper for Biological Micro-Manipulation
,”
Microsyst. Technol.
,
19
(
1
), pp.
89
97
.
105.
Bharanidaran
,
R.
, and
Ramesh
,
T.
,
2014
, “
Numerical Simulation and Experimental Investigation of a Topologically Optimized Compliant Microgripper
,”
Sens. Actuators, A
,
205
, pp.
156
163
.
106.
Stavrov
,
V.
,
Tomerov
,
E.
,
Hardalov
,
C.
,
Danchev
,
D.
,
Kostadinov
,
K.
,
Stavreva
,
G.
,
Apostolov
,
E.
,
Shulev
,
A.
,
Andonova
,
A.
, and
Al-Wahab
,
M.
,
2010
, “
Low Voltage Thermo-Mechanically Driven Monolithic Microgripper With Piezoresistive Feedback
,”
Precision Assembly Technologies and Systems
(IFIP Advances in Information and Communication Technology, Vol.
315
),
S.
Ratchev
, ed.,
Springer
,
Berlin
, pp.
207
214
.
107.
Ai
,
W.
, and
Xu
,
Q.
,
2014
, “
New Structure Design of a Flexure-Based Compliant Microgripper
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Bali, Indonesia, Dec. 5–10, pp.
2588
2593
.
108.
Blideran
,
M. M.
,
Bertsche
,
G.
,
Henschel
,
W.
, and
Kern
,
D. P.
,
2006
, “
A Mechanically Actuated Silicon Microgripper for Handling Micro- and Nanoparticles
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
1382
1385
.
109.
Blideran
,
M. M.
,
Fleischer
,
M.
,
Grauvogel
,
F.
,
Löffler
,
K.
,
Langer
,
M. G.
, and
Kern
,
D. P.
,
2008
, “
Real-Time Gripping Detection for a Mechanically Actuated Microgripper
,”
Microelectron. Eng.
,
85
(
5–6
), pp.
1022
1026
.
110.
Zeman
,
M. J. F.
,
Bordatchev
,
E. V.
, and
Knopf
,
G. K.
,
2006
, “
Design, Kinematic Modeling and Performance Testing of an Electro-Thermally Driven Microgripper for Micromanipulation Applications
,”
J. Micromech. Microeng.
,
16
(
8
), p.
1540
.
111.
Greminger
,
M. A.
,
Sezen
,
A. S.
, and
Nelson
,
B. J.
,
2005
, “
A Four Degree of Freedom MEMS Microgripper With Novel Bi-Directional Thermal Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2005
), Edmonton, AB, Canada, Aug. 2–6, pp.
2814
2819
.
112.
Chang, R.-J., Shiu, C.-C., and Cheng, C.-Y.,
2013
, “
Self-Biased-SMA Drive PU Microgripper With Force Sensing in Visual Servo
,”
Int. J. Adv. Rob. Syst.
,
10
(
280
), p.
280
.
113.
Fraser
,
J.
,
Hubbard
,
T.
, and
Kujath
,
M.
,
2006
, “
Theoretical and Experimental Analysis of an Off-Chip Microgripper
,”
Can. J. Electr. Comput. Eng.
,
31
(
2
), pp.
77
84
.
114.
Wu
,
Z.
, and
Li
,
Y.
,
2014
, “
Optimal Design and Comparative Analysis of a Novel Microgripper Based on Matrix Method
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Besançon, France, July 8–11, pp.
955
960
.
115.
Wu
,
Z.
, and
Li
,
Y.
,
2014
, “
Design, Modeling, and Analysis of a Novel Microgripper Based on Flexure Hinges
,”
Adv. Mech. Eng.
,
6
, p.
47584
.
116.
Iamoni
,
S.
, and
Somà
,
A.
,
2014
, “
Design of an Electro-Thermally Actuated Cell Microgripper
,”
Microsyst. Technol.
,
20
(
4–5
), pp.
869
877
.
117.
Boudaoud
,
M.
,
Haddab
,
Y.
, and
Le Gorrec
,
Y.
,
2010
, “
Modelling of a MEMS-Based Microgripper: Application to Dexterous Micromanipulation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
5634
5639
.
118.
Ivanova
,
K.
,
Ivanov
,
T.
,
Badar
,
A.
,
Volland
,
B. E.
,
Rangelow
,
I. W.
,
Andrijasevic
,
D.
,
Sümecz
,
F.
,
Fischer
,
S.
,
Spitzbart
,
M.
,
Brenner
,
W.
, and
Kostic
,
I.
,
2006
, “
Thermally Driven Microgripper as a Tool for Micro Assembly
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
1393
1395
.
119.
Nguyen
,
N.-T.
,
Ho
,
S.-S.
, and
Low
,
C. L.-N.
,
2004
, “
A Polymeric Microgripper With Integrated Thermal Actuators
,”
J. Micromech. Microeng.
,
14
(
7
), p.
969
.
120.
Solano
,
B.
, and
Wood
,
D.
,
2007
, “
Design and Testing of a Polymeric Microgripper for Cell Manipulation
,”
Microelectron. Eng.
,
84
(
5–8
), pp.
1219
1222
.
121.
Vijayasai
,
A. P.
,
Sivakumar
,
G.
,
Mulsow
,
M.
,
Lacouture
,
S.
,
Holness
,
A.
, and
Dallas
,
T. E.
,
2012
, “
Haptic Controlled Three Degree-of-Freedom Microgripper System for Assembly of Detachable Surface-Micromachined MEMS
,”
Sens. Actuators, A
,
179
, pp.
328
336
.
122.
Duc
,
T. C.
,
Lau
,
G. K.
,
Creemer
,
J. F.
, and
Sarro
,
P. M.
,
2008
, “
Electrothermal Microgripper With Large Jaw Displacement and Integrated Force Sensors
,”
IEEE 21st International Conference on Micro Electro Mechanical Systems
(
MEMS 2008
), Tucson, AZ, Jan. 13–17, pp.
519
522
.
123.
Shivhare
,
P.
,
Uma
,
G.
, and
Umapathy
,
M.
,
2016
, “
Design Enhancement of a Chevron Electrothermally Actuated Microgripper for Improved Gripping Performance
,”
Microsyst. Technol.
,
22
(
11
), pp.
2623
2631
.
124.
Jia
,
Y.
, and
Xu
,
Q.
,
2013
, “
Design of a Monolithic Dual-Axis Electrostatic Actuation MEMS Microgripper With Capacitive Position/Force Sensors
,”
13th IEEE Conference on Nanotechnology
(
IEEE-NANO
), Beijing, China, Aug. 5–8, pp.
817
820
.
125.
Amjad
,
K.
,
Bazaz
,
S.
, and
Lai
,
Y.
,
2008
, “
Design of an Electrostatic MEMS Microgripper System Integrated With Force Sensor
,”
International Conference on Microelectronics
(
ICM 2008
), Sharjah, United Arab Emirates, Dec. 14–17, pp.
236
239
.
126.
Carlson
,
K.
,
Andersen
,
K. N.
,
Eichhorn
,
V.
,
Petersen
,
D. H.
,
Mølhave
,
K.
,
Bu
,
I. Y. Y.
,
Teo
,
K. B. K.
,
Milne
,
W. I.
,
Fatikow
,
S.
, and
Bøggild
,
P.
,
2007
, “
A Carbon Nanofibre Scanning Probe Assembled Using an Electrothermal Microgripper
,”
Nanotechnology
,
18
(
34
), p.
345501
.
127.
Chen
,
T.
,
Sun
,
L.
,
Chen
,
L.
,
Rong
,
W.
, and
Li
,
X.
,
2010
, “
A Hybrid-Type Electrostatically Driven Microgripper With an Integrated Vacuum Tool
,”
Sens. Actuators, A
,
158
(
2
), pp.
320
327
.
128.
Khan
,
F.
,
Bazaz
,
S.
, and
Sohail
,
M.
,
2010
, “
Design, Implementation and Testing of Electrostatic SOI MUMPs Based Microgripper
,”
Microsyst. Technol.
,
16
(
11
), pp.
1957
1965
.
129.
Krishnan
,
S.
, and
Saggere
,
L.
,
2012
, “
Design and Development of a Novel Micro-Clasp Gripper for Micromanipulation of Complex-Shaped Objects
,”
Sens. Actuators, A
,
176
, pp.
110
123
.
130.
Harouche
,
I. P. F.
, and
Shafai
,
C.
,
2005
, “
Simulation of Shaped Comb Drive as a Stepped Actuator for Microtweezers Application
,”
Sens. Actuators, A
,
123–124
, pp.
540
546
.
131.
Ali
,
N.
,
Shakoor
,
R.
, and
Hassan
,
M.
,
2011
, “
Design, Modeling and Simulation of Electrothermally Actuated Microgripper With Integrated Capacitive Contact Sensor
,”
IEEE 14th International Multitopic Conference
(
INMIC
), Karachi, Pakistan, Dec. 22–24, pp.
201
206
.
132.
Elbuken
,
C.
,
Gui
,
L.
,
Ren
,
C. L.
,
Yavuz
,
M.
, and
Khamesee
,
M. B.
,
2008
, “
Design and Analysis of a Polymeric Photo-Thermal Microactuator
,”
Sens. Actuators, A
,
147
(
1
), pp.
292
299
.
133.
Kohl
,
M.
,
Just
,
E.
,
Pfleging
,
W.
, and
Miyazaki
,
S.
,
2000
, “
SMA Microgripper With Integrated Antagonism
,”
Sens. Actuators, A
,
83
(
1–3
), pp.
208
213
.
134.
Kohl
,
M.
,
Krevet
,
B.
, and
Just
,
E.
,
2002
, “
SMA Microgripper System
,”
Sens. Actuators, A
,
97–98
, pp.
646
652
.
135.
Chen
,
T.
,
Chen
,
L.
,
Sun
,
L.
,
Wang
,
J.
, and
Li
,
X.
,
2008
, “
A Sidewall Piezoresistive Force Sensor Used in a MEMS Gripper
,”
Intelligent Robotics and Applications
(Lecture Notes in Computer Science), Vol.
5315
,
C.
Xiong
,
H.
Liu
,
Y.
Huang
, and
Y.
Xiong
, eds., Springer, Berlin.
136.
Chen
,
T.
,
Chen
,
L.
, and
Sun
,
L.
,
2009
, “
Piezoelectrically Driven Silicon Microgrippers Integrated With Sidewall Piezoresistive Sensor
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
2989
2994
.
137.
Chen
,
T.
,
Chen
,
L.
,
Sun
,
L.
, and
Li
,
X.
,
2009
, “
Design and Fabrication of a Four-Arm-Structure MEMS Gripper
,”
IEEE Trans. Ind. Electron.
,
56
(
4
), pp.
996
1004
.
138.
Chen
,
T.
,
Chen
,
L.
,
Sun
,
L.
,
Rong
,
W.
, and
Yang
,
Q.
,
2010
, “
Micro Manipulation Based on Adhesion Control With Compound Vibration
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2010
), Taipei, Taiwan, 18–22, pp.
6137
6142
.
139.
Kim
,
D.-H.
,
Kim
,
B.
, and
Kang
,
H.
,
2004
, “
Development of a Piezoelectric Polymer-Based Sensorized Microgripper for Microassembly and Micromanipulation
,”
Microsyst. Technol.
,
10
(
4
), pp.
275
280
.
140.
Kim
,
D.-H.
,
Lee
,
M.-G.
,
Kim
,
B.
, and
Shim
,
J.-H.
,
2004
, “
A Superelastic Alloy Microgripper With Embedded Electromagnetic Actuators and Piezoelectric Sensors
,”
Proc. SPIE
,
5604
, pp.
230
237
.
141.
Park
,
J.
,
Kim
,
S.
,
Kim
,
D.-H.
,
Kim
,
B.
,
Kwon
,
S. J.
,
Park
,
J.-O.
, and
Lee
,
K.-I.
,
2005
, “
Identification and Control of a Sensorized Microgripper for Micromanipulation
,”
IEEE/ASME Trans. Mechatron.
,
10
(
5
), pp.
601
606
.
142.
Kim
,
K.
,
Liu
,
X.
,
Zhang
,
Y.
, and
Sun
,
Y.
,
2008
, “
Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper With Two-Axis Force Feedback
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055013
.
143.
Choi
,
H.-S.
,
Lee
,
D.-C.
,
Kim
,
S.-S.
, and
Han
,
C.-S.
,
2005
, “
The Development of a Microgripper With a Perturbation-Based Configuration Design Method
,”
J. Micromech. Microeng.
,
15
(
6
), p.
1327
.
144.
Choi
,
H.
,
Shin
,
D.
,
Ryuh
,
Y.
, and
Han
,
C.
,
2011
, “
Development of a Micro Manipulator Using a Microgripper and PZT Actuator for Microscopic Operations
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Phucket, Thailand, Dec. 7–11, pp.
744
749
.
145.
Panepucci
,
R. R.
, and
Martinez
,
J. A.
,
2008
, “
Novel SU-8 Optical Waveguide Microgripper for Simultaneous Micromanipulation and Optical Detection
,”
J. Vac. Sci. Technol., B
,
26
(
6
), pp.
2624
2627
.
146.
Volland
,
B.
,
Heerlein
,
H.
, and
Rangelow
,
I.
,
2002
, “
Electrostatically Driven Microgripper
,”
Microelectron. Eng.
,
61–62
, pp.
1015
1023
.
147.
Houston
,
K.
,
Eder
,
C.
,
Sieber
,
A.
,
Menciassi
,
A.
,
Carrozza
,
M.
, and
Dario
,
P.
,
2007
, “
Polymer Sensorised Microgrippers Using SMA Actuation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Roma, Italy, Apr. 10–14, pp.
820
825
.
148.
Yamahata
,
C.
,
Collard
,
D.
,
Legrand
,
B.
,
Takekawa
,
T.
,
Kumemura
,
M.
,
Hashiguchi
,
G.
, and
Fujita
,
H.
,
2008
, “
Silicon Nanotweezers With Subnanometer Resolution for the Micromanipulation of Biomolecules
,”
J. Microelectromech. Syst.
,
17
(
3
), pp.
623
631
.
149.
Tarhan
,
M. C.
,
Lafitte
,
N.
,
Tauran
,
Y.
,
Jalabert
,
L.
,
Kumemura
,
M.
,
Perret
,
G.
,
Kim
,
B.
,
Coleman
,
A. W.
,
Fujita
,
H.
, and
Collard
,
D.
,
2016
, “
A Rapid and Practical Technique for Real-Time Monitoring of Biomolecular Interactions Using Mechanical Responses of Macromolecules
,”
Sci. Rep.
,
6
(
1
), pp.
1
10
.
150.
Lafitte
,
N.
,
Haddab
,
Y.
,
Le Gorrec
,
Y.
,
Guillou
,
H.
,
Kumemura
,
M.
,
Jalabert
,
L.
,
Collard
,
D.
, and
Fujita
,
H.
,
2015
, “
Improvement of Silicon Nanotweezers Sensitivity for Mechanical Characterization of Biomolecules Using Closed-Loop Control
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1418
1427
.
151.
Kim
,
B.-S.
,
Park
,
J.-S.
,
Kang
,
B. H.
, and
Moon
,
C.
,
2012
, “
Fabrication and Property Analysis of a MEMS Micro-Gripper for Robotic Micro-Manipulation
,”
Rob. Comput.-Integr. Manuf.
,
28
(
1
), pp.
50
56
.
152.
Dow
,
A. B. A.
,
Jazizadeh
,
B.
,
Kherani
,
N. P.
, and
Rangelow
,
I.
,
2011
, “
Development and Modeling of an Electrothermally MEMS Microactuator With an Integrated Microgripper
,”
J. Micromech. Microeng.
,
21
(
12
), p.
125026
.
153.
Mackay
,
R.
,
Le
,
H.
, and
Keatch
,
R.
,
2011
, “
Design Optimisation and Fabrication of SU-8 Based Electro-Thermal Micro-Grippers
,”
J. Micro-Nano Mechatron.
,
6
(
1
), pp.
13
22
.
154.
Imai
,
S.
,
Ishikawa
,
T.
,
Sato
,
M.
,
Sato
,
H.
, and
Tamura
,
K.
,
2010
, “
Handling Characteristics of MEMS-Tweezers With Contact Surface Fabricated by DRIE
,”
J. Adv. Mech. Des., Syst. Manuf.
,
4
(
1
), pp.
150
157
.
155.
Giouroudi
,
I.
,
Hötzendorfer
,
H.
,
Kosel
,
J.
,
Andrijasevic
,
D.
, and
Brenner
,
W.
,
2008
, “
Development of a Microgripping System for Handling of Microcomponents
,”
Precis. Eng.
,
32
(
2
), pp.
148
152
.
156.
Zheng
,
X.
,
Kim
,
J.-K.
, and
Lee
,
D.-W.
,
2011
, “
Design and Fabrication of a Novel Microgripper With Four-Point Contact Fingers
,”
J. Vac. Sci. Technol., A
,
29
(
1
), p.
011007
.
157.
Grossard
,
M.
,
Boukallel
,
M.
,
Chaillet
,
N.
, and
Rotinat-Libersa
,
C.
,
2011
, “
Modeling and Robust Control Strategy for a Control-Optimized Piezoelectric Microgripper
,”
IEEE/ASME Trans. Mechatron.
,
16
(
4
), pp.
674
683
.
158.
Chang
,
H.
,
Zhao
,
H.
,
Ye
,
F.
,
Yuan
,
G.
,
Xie
,
J.
,
Kraft
,
M.
, and
Yuan
,
W.
,
2014
, “
A Rotary Comb-Actuated Microgripper With a Large Displacement Range
,”
Microsyst. Technol.
,
20
(
1
), pp.
119
126
.
159.
Piriyanont
,
B.
, and
Moheimani
,
S.
,
2014
, “
MEMS Rotary Microgripper With Integrated Electrothermal Force Sensor
,”
J. Microelectromech. Syst.
,
23
(
6
), pp.
1249
1251
.
160.
Piriyanont
,
B.
,
Fowler
,
A.
, and
Moheimani
,
S.
,
2015
, “
Force-Controlled MEMS Rotary Microgripper
,”
J. Microelectromech. Syst.
,
24
(
4
), pp.
1164
1172
.
161.
Chen
,
B.
, and
Sun
,
Y.
,
2011
, “
A MEMS Microgripper With Changeable Gripping Tips
,”
16th International Solid-State Sensors, Actuators and Microsystems Conference
(
TRANSDUCERS
), Beijing, China, June 5–9, pp.
498
501
.
162.
Komati
,
B.
,
Rabenorosoa
,
K.
,
Clevy
,
C.
, and
Lutz
,
P.
,
2013
, “
Automated Guiding Task of a Flexible Micropart Using a Two-Sensing-Finger Microgripper
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
515
524
.
163.
Hazra
,
S. S.
,
Beuth
,
J. L.
,
Myers
,
G. A.
,
DelRio
,
F. W.
, and
de Boer
,
M. P.
,
2015
, “
Design and Test of Reliable High Strength Ingressive Polycrystalline Silicon Microgripper Arrays
,”
J, Micromech. Microeng.
,
25
(
1
), p.
015009
.
164.
Kalaiarasi
,
A.
, and
Thilagar
,
S.
,
2012
, “
Design and Modeling of Electrostatically Actuated Microgripper
,”
IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications
(
MESA
), Suzhou, China, July 8–10, pp.
7
11
.
165.
Kim
,
C.-J.
,
Pisano
,
A.
, and
Muller
,
R.
,
1992
, “
Silicon-Processed Overhanging Microgripper
,”
J. Microelectromech. Syst.
,
1
(
1
), pp.
31
36
.
166.
Yoshida
,
K.
,
Tsukamoto
,
N.
,
Wan Kim
,
J.
, and
Yokota
,
S.
,
2015
, “
A Study on a Soft Microgripper Using MEMS-Based Divided Electrode Type Flexible Electro-Rheological Valves
,”
Mechatronics
,
29
, pp.
103
109
.
167.
Luo
,
J.
,
Huang
,
R.
,
He
,
J.
,
Fu
,
Y.
,
Flewitt
,
A.
,
Spearing
,
S.
,
Fleck
,
N.
, and
Milne
,
W.
,
2006
, “
Modelling and Fabrication of Low Operation Temperature Microcages With a Polymer/Metal/DLC Trilayer Structure
,”
Sens. Actuators, A
,
132
(
1
), pp.
346
353
.
168.
Jeon
,
C.-S.
,
Park
,
J.-S.
,
Lee
,
S.-Y.
, and
Moon
,
C.-W.
,
2007
, “
Fabrication and Characteristics of Out-of-Plane Piezoelectric Micro Grippers Using MEMS Processes
,”
Thin Solid Films
,
515
(
12
), pp.
4901
4904
.
169.
Jain
,
R. K.
,
Majumder
,
S.
,
Ghosh
,
B.
, and
Saha
,
S.
,
2015
, “
Design and Manufacturing of Mobile Micro Manipulation System With a Compliant Piezoelectric Actuator Based Micro Gripper
,”
J. Manuf. Syst.
,
35
, pp.
76
91
.
170.
Alogla
,
A.
,
Amalou
,
F.
,
Balmer
,
C.
,
Scanlan
,
P.
,
Shu
,
W.
, and
Reuben
,
R.
,
2015
, “
Micro-Tweezers: Design, Fabrication, Simulation and Testing of a Pneumatically Actuated Micro-Gripper for Micromanipulation and Microtactile Sensing
,”
Sens. Actuators, A
,
236
, pp.
394
404
.
171.
Kurita
,
Y.
,
Sugihara
,
F.
,
Ueda
,
J.
, and
Ogasawara
,
T.
,
2012
, “
Piezoelectric Tweezer-Type End Effector With Force- and Displacement-Sensing Capability
,”
IEEE/ASME Trans. Mechatron.
,
17
(
6
), pp.
1039
1048
.
172.
Rakotondrabe
,
M.
, and
Ivan
,
I.
,
2011
, “
Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric Microgripper Dedicated to Micromanipulation Tasks
,”
IEEE Trans. Autom. Sci. Eng.
,
8
(
4
), pp.
824
834
.
173.
Kuo
,
J.-C.
,
Huang
,
H.-W.
,
Tung
,
S.-W.
, and
Yang
,
Y.-J.
,
2014
, “
A Hydrogel-Based Intravascular Microgripper Manipulated Using Magnetic Fields
,”
Sens. Actuators, A
,
211
, pp.
121
130
.
174.
Wester
,
B. A.
,
Rajaraman
,
S.
,
Ross
,
J. D.
,
LaPlaca
,
M. C.
, and
Allen
,
M. G.
,
2011
, “
Development and Characterization of a Packaged Mechanically Actuated Microtweezer System
,”
Sens. Actuators, A
,
167
(
2
), pp.
502
511
.
175.
Sardan
,
O.
,
Petersen
,
D. H.
,
Mølhave
,
K.
,
Sigmund
,
O.
, and
Boggild
,
P.
,
2008
, “
Topology Optimized Electrothermal Polysilicon Microgrippers
,”
Microelectron. Eng.
,
85
(
5–6
), pp.
1096
1099
.
176.
Voicu
,
R.
,
Muller
,
R.
, and
Eftime
,
L.
,
2008
, “
Design Optimization for an Electro-Thermally Actuated Polymeric Microgripper
,”
Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
(
DTIP
), Nice, France, Apr. 9–11, pp.
182
186
.
177.
Daunton
,
R.
,
Gallant
,
A.
,
Wood
,
D.
, and
Kataky
,
R.
,
2011
, “
A Thermally Actuated Microgripper as an Electrochemical Sensor With the Ability to Manipulate Single Cells
,”
Chem. Commun.
,
47
(
22
), pp.
6446
6448
.
178.
Shih
,
C. J.
, and
Lin
,
C. F.
,
2006
, “
A Two-Stage Topological Optimum Design for Monolithic Compliant Microgripper Integrated With Flexure Hinges
,”
J. Phys.: Conf. Ser.
,
34
(
1
), p.
840
.
179.
Dodd
,
L. E.
,
Ward
,
S. C.
,
Cooke
,
M. D.
, and
Wood
,
D.
,
2015
, “
The Static and Dynamic Response of SU-8 Electrothermal Microgrippers of Varying Thickness
,”
Microelectron. Eng.
,
145
, pp.
82
85
.
180.
Huang
,
S.-C.
,
LEE
,
C.-M.
,
Chiu
,
C.-C.
, and
Chen
,
W.-L.
,
2006
, “
Topology Optimal Compliant Microgripper
,”
JSME Int. J. Ser. A: Solid Mech. Mater. Eng.
,
49
(
4
), pp.
589
596
.
181.
Piriyanont
,
B.
,
Moheimani
,
S.
, and
Bazaei
,
A.
,
2013
, “
Design and Control of a MEMS Micro-Gripper With Integrated Electro-Thermal Force Sensor
,”
Third Australian Control Conference
(
AUCC
), Sydney, Australia, Nov. 4–5, pp.
479
484
.
182.
Wierzbicki
,
R.
,
Houston
,
K.
,
Heerlein
,
H.
,
Barth
,
W.
,
Debski
,
T.
,
Eisinberg
,
A.
,
Menciassi
,
A.
,
Carrozza
,
M.
, and
Dario
,
P.
,
2006
, “
Design and Fabrication of an Electrostatically Driven Microgripper for Blood Vessel Manipulation
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
1651
1654
.
183.
Huang
,
S.-C.
, and
Chen
,
W.-L.
,
2008
, “
Design of Topologically Optimal Microgripper
,”
IEEE International Conference on Systems, Man and Cybernetics
(
SMC 2008
), Singapore, Oct. 12–15, pp.
1694
1698
.
184.
Wierzbicki
,
R.
,
Adda
,
C.
, and
Hotzendorfer
,
H.
,
2007
, “
Electrostatic Silicon Microgripper With Low Voltage of Actuation
,”
International Symposium on Micro-NanoMechatronics and Human Science
(
MHS'07
), Nagoya, Japan, Nov. 11–14, pp.
344
349
.
185.
Chen
,
B.
,
Zhang
,
Y.
, and
Sun
,
Y.
,
2009
, “
Active Release of Microobjects Using a MEMS Microgripper to Overcome Adhesion Forces
,”
J. Microelectromech. Syst.
,
18
(
3
), pp.
652
659
.
186.
Hamedi
,
M.
,
Salimi
,
P.
, and
Vismeh
,
M.
,
2012
, “
Simulation and Experimental Investigation of a Novel Electrostatic Microgripper System
,”
Microelectron. Eng.
,
98
, pp.
467
471
.
187.
Demaghsi
,
H.
,
Mirzajani
,
H.
, and
Ghavifekr
,
H.
,
2014
, “
A Novel Electrostatic Based Microgripper (Cellgripper) Integrated With Contact Sensor and Equipped With Vibrating System to Release Particles Actively
,”
Microsyst. Technol.
,
20
(
12
), pp.
2191
2202
.
188.
Demaghsi
,
H.
,
Mirzajani
,
H.
, and
Ghavifekr
,
H.
,
2014
, “
Design and Simulation of a Novel Metallic Microgripper Using Vibration to Release Nano Objects Actively
,”
Microsyst. Technol.
,
20
(
1
), pp.
65
72
.
You do not currently have access to this content.