This paper shows how to measure the intrinsic complexity and dimensionality of a design space. It assumes that high-dimensional design parameters actually lie in a much lower-dimensional space that represents semantic attributes—a design manifold. Past work has shown how to embed designs using techniques like autoencoders; in contrast, the method proposed in this paper first captures the inherent properties of a design space and then chooses appropriate embeddings based on the captured properties. We demonstrate this with both synthetic shapes of controllable complexity (using a generalization of the ellipse called the superformula) and real-world designs (glassware and airfoils). We evaluate multiple embeddings by measuring shape reconstruction error, pairwise distance preservation, and captured semantic attributes. By generating fundamental knowledge about the inherent complexity of a design space and how designs differ from one another, our approach allows us to improve design optimization, consumer preference learning, geometric modeling, and other design applications that rely on navigating complex design spaces. Ultimately, this deepens our understanding of design complexity in general.

References

References
1.
Gielis
,
J.
,
2003
, “
A Generic Geometric Transformation That Unifies a Wide Range of Natural and Abstract Shapes
,”
Am. J. Bot.
,
90
(
3
), pp.
333
338
.
2.
Xu
,
K.
,
Kim
,
V. G.
,
Huang
,
Q.
,
Mitra
,
N.
, and
Kalogerakis
,
E.
,
2016
, “
Data-Driven Shape Analysis and Processing
,” SIGGRAPH ASIA 2016 Courses, (
SA
), Macau, Dec. 5–8, pp.
1
4
.
3.
Müller
,
P.
,
Wonka
,
P.
,
Haegler
,
S.
,
Ulmer
,
A.
, and
Van Gool
,
L.
,
2006
, “
Procedural Modeling of Buildings
,”
ACM Trans. Graphics
,
25
(
3
), pp.
614
623
.
4.
Talton
,
J. O.
,
Lou
,
Y.
,
Lesser
,
S.
,
Duke
,
J.
,
Měch
,
R.
, and
Koltun
,
V.
,
2011
, “
Metropolis Procedural Modeling
,”
ACM Trans. Graphics
,
30
(
2
), pp.
1
14
.
5.
Cagan
,
J.
,
Campbell
,
M. I.
,
Finger
,
S.
, and
Tomiyama
,
T.
,
2005
, “
A Framework for Computational Design Synthesis: Model and Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
171
181
.
6.
Wyatt
,
D. F.
,
Wynn
,
D. C.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
,
2012
, “
Supporting Product Architecture Design Using Computational Design Synthesis With Network Structure Constraints
,”
Res. Eng. Des.
,
23
(
1
), pp.
17
52
.
7.
Königseder
,
C.
, and
Shea
,
K.
,
2015
, “
Analyzing Generative Design Grammars
,”
Design Computing and Cognition'14
, Springer, Cham, Switzerland, pp.
363
381
.
8.
Oberhauser
,
M.
,
Sartorius
,
S.
,
Gmeiner
,
T.
, and
Shea
,
K.
,
2015
, “
Computational Design Synthesis of Aircraft Configurations With Shape Grammars
,”
Design Computing and Cognition’14
, Springer, Cham, Switzerland, pp.
21
39
.
9.
Königseder
,
C.
, and
Shea
,
K.
,
2016
, “
Comparing Strategies for Topologic and Parametric Rule Application in Automated Computational Design Synthesis
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011102
.
10.
Chaudhuri
,
S.
, and
Koltun
,
V.
,
2010
, “
Data-Driven Suggestions for Creativity Support in 3D Modeling
,”
ACM Trans. Graphics
,
29
(
6
), pp.
1
–10.
11.
Chaudhuri
,
S.
,
Kalogerakis
,
E.
,
Guibas
,
L.
, and
Koltun
,
V.
,
2011
, “
Probabilistic Reasoning for Assembly-Based 3D Modeling
,”
ACM Trans. Graphics
,
30
(
4
), pp.
1
–10.
12.
Kalogerakis
,
E.
,
Chaudhuri
,
S.
,
Koller
,
D.
, and
Koltun
,
V.
,
2012
, “
A Probabilistic Model for Component-Based Shape Synthesis
,”
ACM Trans. Graphics
,
31
(
4
), pp.
1
–11.
13.
Chaudhuri
,
S.
,
Kalogerakis
,
E.
,
Giguere
,
S.
, and
Funkhouser
,
T.
,
2013
, “
Attribit: Content Creation With Semantic Attributes
,”
26th Annual ACM Symposium on User Interface Software and Technology
(
UIST
), St. Andrews, Scotland, Oct. 8–11, pp.
193
202
.
14.
Guo
,
X.
,
Lin
,
J.
,
Xu
,
K.
, and
Jin
,
X.
,
2014
, “
Creature Grammar for Creative Modeling of 3D Monsters
,”
Graphical Models
,
76
(
5
), pp.
376
389
.
15.
Talton
,
J. O.
,
Gibson
,
D.
,
Yang
,
L.
,
Hanrahan
,
P.
, and
Koltun
,
V.
,
2009
, “
Exploratory Modeling With Collaborative Design Spaces
,”
ACM Trans. Graphics
,
28
(
5
), pp.
1
–10.
16.
Fish
,
N.
,
Averkiou
,
M.
,
Van Kaick
,
O.
,
Sorkine-Hornung
,
O.
,
Cohen-Or
,
D.
, and
Mitra
,
N. J.
,
2014
, “
Meta-Representation of Shape Families
,”
ACM Trans. Graphics
,
33
(
4
), pp.
1
–11.
17.
Averkiou
,
M.
,
Kim
,
V. G.
,
Zheng
,
Y.
, and
Mitra
,
N. J.
,
2014
, “
Shapesynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis
,”
Comput. Graphics Forum
,
33
(
2
), pp.
125
134
.
18.
Yumer
,
M. E.
,
Asente
,
P.
,
Mech
,
R.
, and
Kara
,
L. B.
,
2015
, “
Procedural Modeling Using Autoencoder Networks
,”
28th ACM User Interface Software and Technology Symposium
(
UIST
), Daegu, Kyungpook, Korea, Nov. 8–11, pp. 109–118.
19.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product From Design Space Using Deep Generative Models
,”
ASME
Paper No. DETC2016-60091.
20.
Yumer
,
M. E.
,
Chaudhuri
,
S.
,
Hodgins
,
J. K.
, and
Kara
,
L. B.
,
2015
, “
Semantic Shape Editing Using Deformation Handles
,”
ACM Trans. Graphics
,
34
(
4
), pp.
1
–12.
21.
Van der Maaten
,
L.
,
Postma
,
E.
, and
Van den Herik
,
H.
,
2009
, “
Dimensionality Reduction: A Comparative Review
,” Technical Report No.
TiCC TR 2009-005
.
22.
Bengio
,
Y.
,
Courville
,
A.
, and
Vincent
,
P.
,
2013
, “
Representation Learning: A Review and New Perspectives
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
8
), pp.
1798
1828
.
23.
Duvenaud
,
D. K.
,
Rippel
,
O.
,
Adams
,
R. P.
, and
Ghahramani
,
Z.
,
2014
, “
Avoiding Pathologies in Very Deep Networks
,” arXiv:
1402.5836
.
24.
Larsen
,
K. G.
, and
Nelson
,
J.
,
2014
, “
The Johnson–Lindenstrauss Lemma Is Optimal for Linear Dimensionality Reduction
,” preprint arXiv:
1411.2404
.
25.
Bartal
,
Y.
,
Recht
,
B.
, and
Schulman
,
L. J.
,
2011
, “
Dimensionality Reduction: Beyond the Johnson–Lindenstrauss Bound
,”
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms
(
SODA
), San Francisco, CA, Jan. 23–25, pp.
868
887
.
26.
Shawe-Taylor
,
J.
,
Williams
,
C. K.
,
Cristianini
,
N.
, and
Kandola
,
J.
,
2005
, “
On the Eigenspectrum of the Gram Matrix and the Generalization Error of Kernel-PCA
,”
IEEE Trans. Inf. Theory
,
51
(
7
), pp.
2510
2522
.
27.
Ng
,
A. Y.
,
Jordan
,
M. I.
, and
Weiss
,
Y.
,
2001
, “
On Spectral Clustering: Analysis and an Algorithm
,”
Advances in Neural Information Processing Systems
, MIT Press, Cambridge, MA, Vol.
14
, pp.
849
856
.
28.
Gong
,
D.
,
Zhao
,
X.
, and
Medioni
,
G.
,
2012
, “
Robust Multiple Manifolds Structure Learning
,” preprint arXiv:
1206.4624
.
29.
Zhang
,
Z.
,
Wang
,
J.
, and
Zha
,
H.
,
2012
, “
Adaptive Manifold Learning
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
34
(
2
), pp.
253
265
.
30.
Zelnik-Manor
,
L.
, and
Perona
,
P.
,
2004
, “
Self-Tuning Spectral Clustering
,”
Advances in Neural Information Processing Systems
, MIT Press, Cambridge, MA, Vol.
17
, pp.
1601
–1608.
31.
Samko
,
O.
,
Marshall
,
A. D.
, and
Rosin
,
P. L.
,
2006
, “
Selection of the Optimal Parameter Value for the Isomap Algorithm
,”
Pattern Recog. Lett.
,
27
(
9
), pp.
968
979
.
32.
Schölkopf
,
B.
,
Smola
,
A.
, and
Müller
,
K.-R.
,
1998
, “
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
,”
Neural Comput.
,
10
(
5
), pp.
1299
1319
.
33.
Vincent
,
P.
,
Larochelle
,
H.
,
Lajoie
,
I.
,
Bengio
,
Y.
, and
Manzagol
,
P.-A.
,
2010
, “
Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network With a Local Denoising Criterion
,”
J. Mach. Learn. Res.
,
11
(2), pp.
3371
3408
.
34.
Schölkopf
,
B.
,
Smola
,
A.
, and
Müller
,
K.-R.
,
1997
, “
Kernel Principal Component Analysis
,”
International Conference on Artificial Neural Networks
(
ICANN
), Lausanne, Switzerland, Oct. 8–10, pp.
583
588
.
35.
Vincent
,
P.
,
Larochelle
,
H.
,
Bengio
,
Y.
, and
Manzagol
,
P.-A.
,
2008
, “
Extracting and Composing Robust Features With Denoising Autoencoders
,” 25th International Conference on Machine Learning (
ICML
), Helsinki, Finland, July 5–9, pp.
1096
1103
.
36.
Bengio
,
Y.
,
Lamblin
,
P.
,
Popovici
,
D.
, and
Larochelle
,
H.
,
2007
, “
Greedy Layer-Wise Training of Deep Networks
,” Advances in Neural Information Processing Systems (
NIPS
), MIT Press, Cambridge, MA, Vol.
19
, pp.
153
–160.
37.
Hutter
,
F.
,
Hoos
,
H. H.
, and
Leyton-Brown
,
K.
,
2011
, “
Sequential Model-Based Optimization for General Algorithm Configuration
,” Lecture Notes in Computer Science (
LNCS
), Vol. 6683, Springer, Berlin, pp.
507
523
.
38.
Makridakis
,
S.
,
1993
, “
Accuracy Measures: Theoretical and Practical Concerns
,”
Int. J. Forecasting
,
9
(
4
), pp.
527
529
.
39.
Chen
,
W.
,
Chazan
,
J.
, and
Fuge
,
M.
,
2016
, “
How Designs Differ: Non-Linear Embeddings Illuminate Intrinsic Design Complexity
,”
ASME
Paper No. DETC2016-60112.
You do not currently have access to this content.