A parallel mechanism possesses several advantages compared to a similar-sized serial mechanism, including the potential for higher accuracy and reduced moving mass, the latter enabling increased load capacity and higher acceleration. One of the most important issues affecting a parallel mechanism is the potential of parallel singularities. Such configurations strongly affect the performance of a parallel mechanism, both in the actual singularity and in its vicinity. For example, both the stiffness of a mechanism and the efficiency of the power transmission to the tool platform are related to the closeness to singular configurations. A mechanism with a mobility larger than the mobility of its tool platform is referred to as a kinematically redundant mechanism. It is well known that introducing kinematic redundancy enables a mechanism to avoid singular configurations. In this paper, three novel kinematically redundant planar parallel mechanisms are proposed. All three mechanisms provide planar translations of the tool platform in two degrees-of-freedom, in addition to infinite rotation of the platform around an axis normal to the plane of the translations. The unique feature of the proposed mechanisms is that, with the appropriate inverse kinematics solutions, all configurations in the entire workspace feature optimal singularity avoidance. It is demonstrated how it is sufficient to employ five actuators to achieve this purpose. In addition, it is shown how including more than five actuators significantly reduces the required actuator motions for identical motions of the tool platform, thereby reducing the cycle times for typical applications.

References

References
1.
Lee
,
J.
,
Yi
,
B. J.
,
Oh
,
S. R.
, and
Suh
, I
. H.
,
1998
, “
Optimal Design of a Five-Bar Finger With Redundant Actuation
,”
IEEE International Conference on Robotics and Automation
(
ICRA’98
), May 20, pp.
2068
2074
.
2.
O'Brien
,
J. F.
, and
Wen
,
J. T.
,
1999
, “
Redundant Actuation for Improving Kinematic Manipulability
,”
IEEE International Conference on Robotics and Automation
(
ICRA’99
), May 10–15, pp.
1520
1525
.
3.
Nokleby
,
S. B.
,
Fisher
,
R.
,
Podhorodeski
,
R. P.
, and
Firmani
,
F.
,
2005
, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
5
), pp.
578
599
.
4.
Yi
,
Y.
,
McInroy
,
J. E.
, and
Chen
,
Y.
,
2006
, “
Fault Tolerance of Parallel Manipulators Using Task Space and Kinematic Redundancy
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
1017
1021
.
5.
Isaksson
,
M.
,
Marlow
,
K.
,
Maciejewski
,
A.
, and
Eriksson
,
A.
,
2016
, “
Novel Fault-Tolerance Indices for Redundantly Actuated Parallel Robots
,”
ASME J. Mech. Des.
, (Accepted).
6.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2004
, “
Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
109
118
.
7.
Merlet
,
J.-P.
,
1996
, “
Redundant Parallel Manipulators
,”
Lab. Rob. Autom.
,
8
(
1
), pp.
17
24
.
8.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
9.
Marquet
,
F.
,
Krut
,
S.
,
Company
,
O.
, and
Pierrot
,
F.
,
2001
, “
ARCHI: A New Redundant Parallel Mechanism—Modeling, Control and First Results
,”
IEEE/RSJ International Conference on Robotics and System
(
IROS'01
), Oct. 29–Nov. 3, pp.
183
188
.
10.
Kock
,
S.
,
Oesterlein
,
R.
, and
Brogårdh
,
T.
,
2003
, “
Industrial Robot
,” Patent No. WO 03/066289.
11.
Liu
,
G. F.
,
Wu
,
Y. L.
,
Wu
,
X. Z.
,
Kuen
,
Y. Y.
, and
Li
,
Z. X.
,
2001
, “
Analysis and Control of Redundant Parallel Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA’01
), May 21–26, pp.
3748
3754
.
12.
Isaksson
,
M.
,
2011
, “
A Family of Planar Parallel Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA’11
), May 9–13, pp.
2737
2744
.
13.
Isaksson
,
M.
, and
Watson
,
M.
,
2013
, “
Workspace Analysis of a Novel 6-DOF Parallel Manipulator With Coaxial Actuated Arms
,”
ASME J. Mech. Des.
,
135
(
10
), p.
104501
.
14.
Isaksson
,
M.
,
Eriksson
,
A.
,
Brogardh
,
T.
,
Watson
,
M.
, and
Nahavandi
,
S.
,
2015
, “
A Method for Extending Planar Axis-Symmetric Parallel Manipulators to Spatial Mechanisms
,”
Mech. Mach. Theory
,
83
(1), pp.
1
13
.
15.
Gosselin
,
C.
,
Laliberte
,
T.
, and
Veillette
,
A.
,
2015
, “
Singularity-Free Kinematically Redundant Planar Parallel Mechanisms With Unlimited Rotational Capability
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
457
467
.
16.
Mohamed
,
M. G.
, and
Gosselin
,
C. M.
,
2005
, “
Design and Analysis of Kinematically Redundant Parallel Manipulators With Configurable Platforms
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
277
287
.
17.
Ebrahimi
,
I.
,
Carretero
,
J. A.
, and
Boudreau
,
R.
,
2008
, “
A Family of Kinematically Redundant Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
130
(
6
), p.
062306
.
18.
Alizade
,
R. I.
,
Tagiyev
,
N. R.
, and
Duffy
,
J.
,
1994
, “
A Forward and Reverse Displacement Analysis of a 6-DOF In-Parallel Manipulator
,”
Mech. Mach. Theory
,
29
(
1
), pp.
115
124
.
19.
Reboulet
,
C.
,
1996
, “
Parallel-Structure Manipulator Device for Displacing and Orienting an Object in a Cylindrical Work Space
,” U.S. Patent No. WO 03/066289.
20.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
21.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
, Cambridge, UK.
22.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
University Press
,
Oxford, UK
.
23.
Sutherland
,
G.
, and
Roth
,
B.
,
1973
, “
A Transmission Index for Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
589
597
.
24.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
25.
Liu
,
X.-J.
,
Wu
,
C.
, and
Wang
,
J.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
.
26.
Marlow
,
K.
,
Isaksson
,
M.
,
Dai
,
J. S.
, and
Nahavandi
,
S.
,
2016
, “
Motion/Force Transmission Analysis of Parallel Mechanisms With Planar Closed- Loop Sub-Chains
,”
ASME J. Mech. Des.
,
138
(
6
), p.
062302
.
27.
Marlow
,
K.
,
Isaksson
,
M.
, and
Nahavandi
,
S.
,
2016
, “
Motion/Force Transmission Analysis of Planar Parallel Mechanisms With Closed-Loop Subchains
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041019
.
28.
Xie
,
F.
,
Liu
,
X.-J.
, and
Li
,
J.
,
2014
, “
Performance Indices for Parallel Robots Considering Motion/Force Transmissibility
,”
Intelligent Robotics and Applications
,
Springer International Publishing
,
Switzerland
, pp.
35
43
.
29.
Liu
,
X.-J.
,
Chen
,
X.
, and
Nahon
,
M.
,
2014
, “
Motion/Force Constrainability Analysis of Lower-Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031006
.
30.
Liu
,
H.
,
Wang
,
M.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Kecskeméthy
,
A.
,
2015
, “
A Dual Space Approach For Force/Motion Transmissibility Analysis of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
034504
.
31.
Phakatkar
,
H. G.
,
2006
,
Theory of Machines and Mechanisms I
,
N.
Prakashan
, ed., Pune, India.
You do not currently have access to this content.