In machining process planning, it is critical to ensure that the part created following the manufacturing steps complies with the designated design tolerances. However, the challenge is that manufacturing errors are stochastic in nature and are introduced at almost every step of executing a plan, for example, due to inaccuracy of tooling, misalignment of location, etc. Furthermore, these errors accumulate or “stack up” as the machining process progresses to inevitably produce a part that varies from the original design. The resulting variations should be within prescribed design tolerances for the manufactured part to be acceptable. In this work, we present a novel approach for assessing the manufacturing errors by representing variations of nominal features with transformations that are defined in terms of extents of the features' degrees-of-freedom (DOFs) within their design and manufacturing tolerance zones (MTZs). We show how the manufacturing errors stackup can be effectively represented by the composition and intersection of these transformations. Several examples representing scenarios of different complexities are demonstrated to show the applicability of our approach in assessing the influence of manufacturing errors on the design tolerances following a machining plan. Discussions of our approach are provided to address concerns with the accuracy and efficiency as well as to disclose the potential of our approach to enable a tolerance-aware process planning system.

References

References
1.
Fischer
,
B. R.
,
2012
,
Mechanical Tolerance Stackup and Analysis
,
2nd ed.
,
Taylor and Francis
,
Oxfordshire, UK
.
2.
Fu
,
W.
,
Nelaturi
,
S.
,
Rangarajan
,
A.
, and
Kurtoglu
,
T.
,
2014
, “
Tolerance Analysis for Validating Manufacturing Process Plans
,”
ASME
Paper No. DETC2014-34329.
3.
ASME
,
2009
,
Dimensioning and Tolerancing, ASME y14.5-2009
,
American Society of Mechanical Engineers
,
New York
.
4.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
247
256
.
5.
Chen
,
H.
,
Jin
,
S.
,
Li
,
Z.
, and
Lai
,
X.
,
2014
, “
A Comprehensive Study of Three Dimensional Tolerance Analysis Methods
,”
Comput. Des.
,
53
, pp.
1
13
.
6.
Schleich
,
B.
,
Anwer
,
N.
,
Zhu
,
Z.
,
Qiao
,
L.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
A Comparative Study on Tolerance Analysis Approaches
,”
International Symposium on Robust Design, ISoRD
14
, pp.
29
39
.
7.
Salomons
,
O. W.
,
Poerink
,
H. J. J.
,
Van Slooten
,
F.
,
Van Houten
,
F. J. A. M.
, and
Kals
,
H. J. J.
,
1995
, “
A Computer Aided Tolerancing Tool Based on Kinematic Analogies
,”
CIRP Seminar on Computer Aided Tolerancing
, pp.
53
72
.
8.
Gao
,
J.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
,
1998
, “
Generalized 3-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments
,”
IIE Trans.
,
30
(
4
), pp.
367
377
.
9.
Wang
,
H.
,
Pramanik
,
N.
,
Roy
,
U.
,
Sudarsan
,
R.
,
Sriram
,
R. D.
, and
Lyons
,
K. W.
,
2006
, “
A Scheme for Mapping Tolerance Specifications to Generalized Deviation Space for Use in Tolerance Synthesis and Analysis
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
1
), pp.
81
90
.
10.
Giordano
,
M.
,
Samper
,
S.
, and
Petit
,
J.-P.
,
2007
, “
Tolerance Analysis and Synthesis by Means of Deviation Domains, Axi-Symmetric Cases
,”
Models in Computer Aided Tolerancing in Design and Manufacturing
,
Springer
,
Berlin,
pp.
84
94
.
11.
Anselmetti
,
B.
, and
Louati
,
H.
,
2005
, “
Generation of Manufacturing Tolerancing With ISO Standards
,”
Int. J. Mach. Tools Manuf.
,
45
(
10
), pp.
1124
1131
.
12.
Caux
,
M.
, and
Anselmetti
,
B.
,
2012
, “
3D ISO Manufacturing Specifications With Vectorial Representation of Tolerance Zones
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5
), pp.
577
588
.
13.
Asante
,
J. N.
,
2009
, “
A Small Displacement Torsor Model for Tolerance Analysis in a Workpiece-Fixture Assembly
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
8
), pp.
1005
1020
.
14.
Li
,
H.
,
Zhu
,
H.
,
Li
,
P.
, and
He
,
F.
,
2014
, “
Tolerance Analysis of Mechanical Assemblies Based on Small Displacement Torsor and Deviation Propagation Theories
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1
), pp.
89
99
.
15.
Armillotta
,
A.
,
2016
, “
Tolerance Analysis Considering Form Errors in Planar Datum Features
,”
Proc. CIRP
,
43
, pp.
64
69
.
16.
Pierce
,
R. S.
, and
Rosen
,
D.
,
2007
, “
A Method for Integrating Form Errors Into Geometric Tolerance Analysis
,”
ASME J. Mech. Des.
,
130
(
1
), p.
11002
.
17.
Marziale
,
M.
, and
Polini
,
W.
,
2009
, “
A Review of Two Models for Tolerance Analysis of an Assembly: Vector Loop and Matrix
,”
Int. J. Adv. Manuf. Technol.
,
43
(
11
), pp.
1106
1123
.
18.
Nigam
,
S. D.
, and
Turner
,
J. U.
,
1995
, “
Review of Statistical Approaches to Tolerance Analysis
,”
Comput. Des.
,
27
(
1
), pp.
6
15
.
19.
Khan
,
N. S.
,
2011
, “
Generalized Statistical Tolerance Analysis and Three Dimensional Model for Manufacturing Tolerance Transfer in Manufacturing Process Planning
,” Ph.D. thesis, Arizona State University, Tempe, AZ.
20.
Hamou
,
S.
,
Cheikh
,
A.
,
Linares
,
J. M.
, and
Daho
,
A. C.
,
2006
, “
A Stochastic Concept for the Optimization of Manufacturing Tolerances in Computer Aided Process Plan Simulation
,”
Int. J. Comput. Integr. Manuf.
,
19
(
7
), pp.
663
675
.
21.
Ghie
,
W.
,
Laperrière
,
L.
, and
Desrochers
,
A.
,
2010
, “
Statistical Tolerance Analysis Using the Unified Jacobian–Torsor Model
,”
Int. J. Prod. Res.
,
48
(
15
), pp.
4609
4630
.
22.
Huang
,
S. H.
,
Liu
,
Q.
, and
Musa
,
R.
,
2004
, “
Tolerance-Based Process Plan Evaluation Using Monte Carlo Simulation
,”
Int. J. Prod. Res.
,
42
(
23
), pp.
4871
4891
.
23.
Anderson
,
E. C.
,
1999
, “
Monte Carlo Methods and Importance Sampling
,” lecture notes
Statistics 578C
, University of Washington, Seattle, Seattle WA.
24.
Yan
,
H.
,
Wu
,
X.
, and
Yang
,
J.
,
2015
, “
Application of Monte Carlo Method in Tolerance Analysis
,”
Proc. CIRP
,
27
, pp.
281
285
.
25.
Dantan
,
J. Y.
,
Gayton
,
N.
,
Qureshi
,
A. J.
,
Lemaire
,
M.
, and
Etienne
,
A.
,
2013
, “
Tolerance Analysis Approach Based on the Classification of Uncertainty (Aleatory/Epistemic)
,”
Proc. CIRP
,
10
, pp.
287
293
.
26.
Desrochers
,
A.
, and
Rivibret
,
A.
,
1997
, “
A Matrix Approach to the Representation of Tolerance Zone and Clearances
,”
Int. J. Adv. Manuf. Technol.
,
13
(
9
), pp.
630
636
.
27.
Whitney
,
D. E.
,
Gilbert
,
O. L.
, and
Jastrzebski
,
M.
,
1994
, “
Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies
,”
Res. Eng. Des.
,
6
(
4
), pp.
191
210
.
28.
Mujezinović
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2004
, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
504
518
.
29.
Ameta
,
G.
,
Serge
,
S.
, and
Giordano
,
M.
,
2011
, “
Comparison of Spatial Math Models for Tolerance Analysis: Tolerance-Maps, Deviation Domain, and TTRS
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021004
.
30.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance and Allocate Tolerances for Pin-Hole Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
4
), pp.
347
359
.
31.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Tolerance-Maps Applied to a Point-Line Cluster of Features
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
782
792
.
32.
Zhang
,
Y.
,
Hu
,
W.
, and
Rong
,
Y.
,
2003
, “
Tolerance Analysis Based Computer-Aided Setup Planning
,”
J. Chin. Inst. Ind. Eng.
,
20
(
3
), pp.
247
257
.
33.
Zhang
,
Y.
,
Hu
,
W.
,
Rong
,
Y.
, and
Yen
,
D. W.
,
2001
, “
Graph-Based Set-Up Planning and Tolerance Decomposition for Computer-Aided Fixture Design
,”
Int. J. Prod. Res.
,
39
(
14
), pp.
3109
3126
.
34.
Liu
,
Q.
, and
Huang
,
S.
,
2003
, “
Rigorous Application of Tolerance Analysis in Setup Planning
,”
Int. J. Adv. Manuf. Technol.
,
21
(
3
), pp.
196
207
.
35.
Abdou
,
G.
, and
Cheng
,
R.
,
1993
, “
TVCAPP, Tolerance Verification in Computer-Aided Process Planning
,”
Int. J. Prod. Res.
,
31
(
2
), pp.
393
411
.
36.
Rong
,
Y.
, and
Bai
,
Y.
,
1996
, “
Machining Accuracy Analysis for Computer-Aided Fixture Design Verification
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
289
300
.
37.
Rong
,
Y.
,
Hu
,
W.
,
Kang
,
Y.
,
Zhang
,
Y.
, and
Yen
,
D. W.
,
2001
, “
Locating Error Analysis and Tolerance Assignment for Computer-Aided Fixture Design
,”
Int. J. Prod. Res.
,
39
(
15
), pp.
3529
3545
.
38.
Villeneuve
,
F.
, and
Vignat
,
F.
,
2005
, “
Manufacturing Process Simulation for Tolerance Analysis and Synthesis
,”
Advances in Integrated Design and Manufacturing in Mechanical Engineering
,
A.
Bramley
,
D.
Brissaud
,
D.
Coutellier
, and
C.
McMahon
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
189
200
.
39.
Nelaturi
,
S.
, and
Shapiro
,
V.
,
2011
, “
Configuration Products and Quotients in Geometric Modeling
,”
Comput. Des.
,
43
(
7
), pp.
781
794
.
40.
Nelaturi
,
S.
,
Burton
,
G.
,
Fritz
,
C.
, and
Kurtoglu
,
T.
,
2015
, “
Automatic Spatial Planning for Machining Operations
,”
IEEE International Conference on Automation Science and Engineering
, pp.
677
682
.
41.
Fu
,
W.
,
Eftekharian
,
A. A.
, and
Campbell
,
M. I.
,
2013
, “
Automated Manufacturing Planning Approach Based on Volume Decomposition and Graph-Grammars
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021010
.
42.
NVIDIA
,
2010
, “
CUDA Programming Guide
,” NVIDIA Corporation, Santa Clara, CA, accessed: Jan. 1,
2016
, http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4bvubpwwh
43.
Fu
,
W.
, and
Campbell
,
M. I.
,
2015
, “
Concurrent Fixture Design for Automated Manufacturing Process Planning
,”
Int. J. Adv. Manuf. Technol.
,
76
(
1
), pp.
375
389
.
You do not currently have access to this content.