In time-dependent reliability analysis, the first-passage method has been extensively used to evaluate structural reliability under time-variant service circumstances. To avoid computing the outcrossing rate in this method, surrogate modeling may provide an effective alternative for calculating the time-dependent reliability indices in structural analysis. A novel approach, namely time-dependent reliability analysis with response surface (TRARS), is thus introduced in this paper to estimate the time-dependent reliability for nondeterministic structures under stochastic loads. A Gaussian stochastic process is generated by using the expansion optimal linear estimation (EOLE) method which has proven to be more accurate and efficient than some series expansion discretization techniques. The random variables and maximum responses of uncertain structures are treated as the input and output parameters, respectively. Through introducing the response surface (RS) model, a novel iterative procedure is proposed in this study. A Bucher strategy is adopted to generate the initial sample points, and a gradient projection technique is used to generate new sampling points for updating the RS model in each iteration. The time-dependent reliability indices and probabilities of failure are thus obtained efficiently using the first-order reliability method (FORM) over a certain design lifetime. In this study, four demonstrative examples are provided for illustrating the accuracy and efficiency of the proposed method.

References

References
1.
Rackwitz
,
R.
, and
Flessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp.
489
494
.
2.
Breitung
,
K.
,
1989
, “
Asymptotic Approximations for Probability Integrals
,”
Probab. Eng. Mech.
,
4
(
4
), pp.
187
190
.
3.
Breitung
,
K.
,
1991
, “
Probability Approximations by Log Likelihood Maximization
,”
J. Eng. Mech.
,
117
(
3
), pp.
457
477
.
4.
Tagliani
,
A.
,
1990
, “
On the Existence of Maximum Entropy Distributions With Four and More Assigned Moments
,”
Probab. Eng. Mech.
,
5
(
4
), pp.
167
170
.
5.
Bucher
,
C.
, and
Bourgund
,
U.
,
1990
, “
A Fast and Efficient Response Surface Approach for Structural Reliability Problems
,”
Struct. Saf.
,
7
(
1
), pp.
57
66
.
6.
Au
,
S.
, and
Beck
,
J. L.
,
1999
, “
A New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Saf.
,
21
(
2
), pp.
135
158
.
7.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
8.
Hagen
,
Ø.
, and
Tvedt
,
L.
,
1991
, “
Vector Process Out-Crossing as Parallel System Sensitivity Measure
,”
J. Eng. Mech.
,
117
(
10
), pp.
2201
2220
.
9.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
.
10.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.
11.
Chen
,
J.-B.
, and
Li
,
J.
,
2007
, “
The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures With Uncertain Parameters
,”
Struct. Saf.
,
29
(
2
), pp.
77
93
.
12.
Wang
,
Z.
, and
Wang
,
P.
,
2013
, “
A New Approach for Reliability Analysis With Time-Variant Performance Characteristics
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
70
81
.
13.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071003
.
14.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
.
15.
Mourelatos
,
Z. P.
,
Majcher
,
M.
,
Pandey
,
V.
, and
Baseski
,
I.
,
2015
, “
Time-Dependent Reliability Analysis Using the Total Probability Theorem
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031405
.
16.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
17.
Drignei
,
D.
,
Baseski
,
I.
,
Mourelatos
,
Z. P.
, and
Kosova
,
E.
,
2016
, “
A Random Process Metamodel Approach for Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011403
.
18.
Wang
,
Z.
,
Mourelatos
,
Z. P.
,
Li
,
J.
,
Baseski
,
I.
, and
Singh
,
A.
,
2014
, “
Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061008
.
19.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
.
20.
Crandall
,
S.
,
Chandiramani
,
K.
, and
Cook
,
R.
,
1966
, “
Some First-Passage Problems in Random Vibration
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
532
538
.
21.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Long
,
X.
,
2015
, “
The Interval PHI2 Analysis Method for Time-Dependent Reliability
,”
Sci. Sin. Phys. Mech. Astron.
,
45
(
5
), p.
054601
.
22.
Lutes
,
L. D.
, and
Sarkani
,
S.
,
2009
, “
Reliability Analysis of Systems Subject to First-Passage Failure
,” NASA Report No. NASA/CR-2009-215782.
23.
Li
,
J.
, and
Mourelatos
,
Z. P.
,
2009
, “
Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071009
.
24.
Mejri
,
M.
,
Cazuguel
,
M.
, and
Cognard
,
J.-Y.
,
2011
, “
A Time-Variant Reliability Approach for Ageing Marine Structures With Non-Linear Behaviour
,”
Comput. Struct.
,
89
(
19
), pp.
1743
1753
.
25.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
1
21
.
26.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
.
27.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.
28.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
A Double-Loop Adaptive Sampling Approach for Sensitivity-Free Dynamic Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
346
356
.
29.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renewable Energy
,
48
, pp.
251
262
.
30.
Du
,
X.
,
2014
, “
Time-Dependent Mechanism Reliability Analysis With Envelope Functions and First-Order Approximation
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081010
.
31.
Jiang
,
C.
,
Huang
,
X.
,
Han
,
X.
, and
Zhang
,
D.
,
2014
, “
A Time-Variant Reliability Analysis Method Based on Stochastic Process Discretization
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091009
.
32.
Vanmarcke
,
E. H.
,
1975
, “
On the Distribution of the First-Passage Time for Normal Stationary Random Processes
,”
ASME J. Appl. Mech.
,
42
(
1
), pp.
215
220
.
33.
Preumont
,
A.
,
1985
, “
On the Peak Factor of Stationary Gaussian Processes
,”
J. Sound Vib.
,
100
(
1
), pp.
15
34
.
34.
Nowak
,
A. S.
, and
Collins
,
K. R.
,
2012
,
Reliability of Structures
,
McGraw-Hill
,
Boston, MA
.
35.
Lazzaroni
,
M.
, Cristaldi, L., Peretto, L., Rinaldi, P., and Catelani, M.,
2011
,
Reliability Engineering: Basic Concepts and Applications in ICT
,
Springer Verlag
,
Berlin, Heidelberg
.
36.
Song
,
J.
, and
Der Kiureghian
,
A.
,
2006
, “
Joint First-Passage Probability and Reliability of Systems Under Stochastic Excitation
,”
J. Eng. Mech.
,
132
(
1
), pp. 65–77.
37.
Ditlevsen
,
O.
,
1986
, “
Duration of Visit to Critical Set by Gaussian Process
,”
Probab. Eng. Mech.
,
1
(
2
), pp.
82
93
.
38.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
,
Wiley
,
New York
.
39.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
New York
.
40.
Zhang
,
J.
, and
Ellingwood
,
B.
,
1994
, “
Orthogonal Series Expansions of Random Fields in Reliability Analysis
,”
J. Eng. Mech.
,
120
(
12
), pp.
2660
2677
.
41.
Li
,
C.-C.
, and
Der Kiureghian
,
A.
,
1993
, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
.
42.
Sudret
,
B.
, and
Der Kiureghian
,
A.
,
2000
, “
Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report
,” University of California, Berkeley, CA,
Report No. UCB/SEMM-2000/08
.
43.
Rajashekhar
,
M. R.
, and
Ellingwood
,
B. R.
,
1993
, “
A New Look at the Response Surface Approach for Reliability Analysis
,”
Struct. Saf.
,
12
(
3
), pp.
205
220
.
44.
Kim
,
S.-H.
, and
Na
,
S.-W.
,
1997
, “
Response Surface Method Using Vector Projected Sampling Points
,”
Struct. Saf.
,
19
(
1
), pp.
3
19
.
45.
Liu
,
J.
,
Sun
,
X.
,
Meng
,
X.
,
Li
,
K.
,
Zeng
,
G.
, and
Wang
,
X.
,
2015
, “
A Novel Shape Function Approach of Dynamic Load Identification for the Structures With Interval Uncertainty
,”
Int. J. Mech. Mater. Des.
,
12
(
3
), pp.
375
386
.
You do not currently have access to this content.