Time-dependent reliability problems widely appear in the engineering practice when the material properties of the structure deteriorate in time or random loading modeled as random processes is involved. Among existing methods to the time-dependent reliability problems, the most dominating one is the outcrossing rate method. This paper presents an outcrossing rate model and its efficient calculation approach for system problems, and based on the presented model, a time-dependent system reliability analysis method is proposed. The main idea of the method is to transform the evaluation of the system outcrossing rates into the calculation of a time-invariant system reliability. Three numerical examples are used to demonstrate the effectiveness of the proposed method.

References

References
1.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
.
2.
Rice
,
S. O.
,
1945
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
24
(
1
), pp.
46
156
.
3.
Engelund
,
S.
,
Rackwitz
,
R.
, and
Lange
,
C.
,
1995
, “
Approximations of First-Passage Times for Differentiable Processes Based on Higher-Order Threshold Crossings
,”
Probab. Eng. Mech.
,
10
(
1
), pp.
53
60
.
4.
Schall
,
G.
,
Faber
,
M.
, and
Rackwitz
,
R.
,
1991
, “
The Ergodicity Assumption for Sea States in the Reliability Estimation of Offshore Structures
,”
ASME J. Offshore Mech. Arct. Eng.
,
113
(
3
), p.
241
.
5.
Rackwitz
,
R.
,
1998
, “
Computational Techniques in Stationary and Non-Stationary Load Combination—A Review and Some Extensions
,”
J. Struct. Eng
,
25
(
1
), pp.
1
20
.
6.
Lutes
,
L. D.
, and
Sarkani
,
S.
,
2004
,
Random Vibrations: Analysis of Structural and Mechanical Systems
,
Butterworth-Heinemann
,
Burlington, MA
.
7.
Lutes
,
L. D.
, and
Sarkani
,
S.
,
2009
, “
Reliability Analysis of Systems Subject to First-Passage Failure
,”
NASA
Technical Report No. NASA/CR-2009-215782.
8.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031005
.
9.
Rackwitz
,
R.
, and
Flessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp.
489
494
.
10.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
ASCE J. Eng. Mech. Div.
,
100
(
1
), pp.
111
121
.
11.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1981
, “
Non-Normal Dependent Vectors in Structural Safety
,”
ASCE J. Eng. Mech. Div.
,
107
(
6
), pp.
1227
1238
.
12.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Dependent Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.
13.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
.
14.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
, “
An Importance Sampling Approach for Time-Dependent Reliability
,”
ASME
Paper No. DETC2011-47200.
15.
Hu
,
Z.
,
Li
,
H.
,
Du
,
X.
, and
Chandrashekhara
,
K.
,
2013
, “
Simulation-Based Time-Dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades
,”
Struct. Multidiscip. Optim.
,
47
(
5
), pp.
765
781
.
16.
Madsen
,
P. H.
, and
Krenk
,
S.
,
1984
, “
An Integral Equation Method for the First-Passage Problem in Random Vibration
,”
ASME J. Appl. Mech.
,
51
(
3
), pp.
674
679
.
17.
Yang
,
J.
, and
Shinozuka
,
M.
,
1971
, “
On the First Excursion Probability in Stationary Narrow-Band Random Vibration
,”
ASME J. Appl. Mech.
,
38
(
4
), pp.
1017
1022
.
18.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Outcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
.
19.
Hagen
,
Ø.
, and
Tvedt
,
L.
,
1991
, “
Vector Process Out-Crossing as Parallel System Sensitivity Measure
,”
ASCE J. Eng. Mech.
,
117
(
10
), pp.
2201
2220
.
20.
Song
,
J.
, and
Der Kiureghian
,
A.
,
2006
, “
Joint First-Passage Probability and Reliability of Systems Under Stochastic Excitation
,”
ASCE J. Eng. Mech
.,
132
(
1
), pp.
65
77
.
21.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A way to Compute Time-Dependent Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
22.
Jiang
,
C.
,
Huang
,
X.
,
Han
,
X.
, and
Zhang
,
D.
,
2014
, “
A Time-Variant Reliability Analysis Method Based on Stochastic Process Discretization
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091009
.
23.
Melchers
,
R. E.
,
1999
,
Structural Reliability Analysis and Prediction
,
Wiley
,
Hoboken, NJ
.
24.
Liu
,
P. L.
, and
Kiureghian
,
A. D.
,
1986
, “
Multivariate Distribution Models With Prescribed Marginals and Covariances
,”
Probab. Eng. Mech.
,
1
(
2
), pp.
105
112
.
25.
Kearsley
,
S. K.
,
1989
, “
On the Orthogonal Transformation Used for Structural Comparisons
,”
Acta Crystallogr. Sect. A: Found. Crystallogr.
,
45
(
2
), pp.
208
210
.
26.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1982–1983
, “
First-Order Concepts in System Reliability
,”
Struct. Saf.
,
1
(
3
), pp.
177
188
.
27.
Nadarajah
,
S.
,
2008
, “
On the Approximations for Multinormal Integration
,”
Comput. Ind. Eng.
,
54
(
3
), pp.
705
708
.
28.
Pandey
,
M.
,
1998
, “
An Effective Approximation to Evaluate Multinormal Integrals
,”
Struct. Saf.
,
20
(
1
), pp.
51
67
.
29.
Genz
,
A.
, and
Bretz
,
F.
,
2009
,
Computation of Multivariate Normal and T Probabilities
,
Springer Science & Business Media
,
Berlin
.
30.
Genz
,
A.
,
1992
, “
Numerical Computation of Multivariate Normal Probabilities
,”
J. Comput. Graphical Stat.
,
1
(
2
), pp.
141
149
.
31.
Tang
,
L.
, and
Melchers
,
R.
,
1986
, “
Improved Approximation for Multinormal Integral
,”
Struct. Saf.
,
4
(
2
), pp.
81
93
.
32.
Schuëller
,
G. I.
,
1997
, “
A State-of-the-Art Report on Computational Stochastic Mechanics
,”
Probab. Eng. Mech.
,
12
(
4
), pp.
197
321
.
33.
Li
,
C.
, and
Der Kiureghian
,
A.
,
1993
, “
Optimal Discretization of Random Fields
,”
ASCE J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
.
34.
Low
,
B.
,
Zhang
,
J.
, and
Tang
,
W. H.
,
2011
, “
Efficient System Reliability Analysis Illustrated for a Retaining Wall and a Soil Slope
,”
Comput. Geotech.
,
38
(
2
), pp.
196
204
.
35.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2015
, “
Time-Dependent System Reliability Analysis Using Random Field Discretization
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101404
.
You do not currently have access to this content.