This paper presents a method for design optimization of brass wind instruments. The shape of a trumpet's bore is optimized to improve intonation using a physics-based sound simulation model. This physics-based model consists of an acoustic model of the resonator, a mechanical model of the excitator, and a model of the coupling between the excitator and the resonator. The harmonic balance technique allows the computation of sounds in a permanent regime, representative of the shape of the resonator according to control parameters of the virtual musician. An optimization problem is formulated in which the objective function to be minimized is the overall quality of the intonation of the different notes played by the instrument. The design variables are the physical dimensions of the resonator. Given the computationally expensive function evaluation and the unavailability of gradients, a surrogate-assisted optimization framework is implemented using the mesh adaptive direct search algorithm (MADS). Surrogate models are used both to obtain promising candidates in the search step of MADS and to rank-order additional candidates generated by the poll step of MADS. The physics-based model is then used to determine the next design iterate. Two examples (with two and five design optimization variables) demonstrate the approach. Results show that significant improvement of intonation can be achieved at reasonable computational cost. Finally, the perspectives of this approach for computer-aided instrument design are evoked, considering optimization algorithm improvements and problem formulation modifications using for instance different design variables, multiple objectives and constraints or objective functions based on the instrument's timbre.

References

References
1.
Fritz
,
C.
, and
Dubois
,
D.
,
2015
, “
Perceptual Evaluation of Musical Instruments: State of the Art and Methodology
,”
Acta Acust. Acust.
,
101
(
2
), pp.
369
381
.
2.
Campbell
,
M.
,
2004
, “
Brass Instruments as We Know Them Today
,”
Acta Acust. Acust.
,
90
(
4
), pp.
600
610
.
3.
Causse
,
R.
,
Kergomard
,
J.
, and
Lurton
,
X.
,
1984
, “
Input Impedance of Brass Musical Instruments: Comparisons Between Experiment and Numerical Models
,”
J. Acoust. Soc. Am.
,
75
(
1
), pp.
241
254
.
4.
Benade
,
A. H.
,
1966
, “
Relation of Air-Column Resonances to Sound Spectra Produced by Wind Instruments
,”
J. Acoust. Soc. Am.
,
40
(
1
), pp.
247
249
.
5.
Kausel
,
W.
,
2001
, “
Optimization of Brasswind Instruments and its Application in Bore Reconstruction
,”
J. New Music Res.
,
30
(
1
), pp.
69
82
.
6.
Braden
,
A. C. P.
,
Newton
,
M. J.
, and
Campbell
,
D. M.
,
2009
, “
Trombone Bore Optimization Based on Input Impedance Targets
,”
J. Acoust. Soc. Am.
,
125
(
4
), pp.
2404
2412
.
7.
Noreland
,
D.
,
2013
, “
A Gradient Based Optimisation Algorithm for the Design of Brass-Wind Instruments
,” Ph.D. thesis, Uppsala University, Uppsala, Sweden.
8.
Poirson
,
E.
,
Petiot
,
J. F.
, and
Gilbert
,
J.
,
2007
, “
Integration of User Perceptions in the Design Process: Application to Musical Instrument Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1206
1214
.
9.
Eveno
,
P.
,
Petiot
,
J. F.
,
Gilbert
,
J.
,
Kieffer
,
B.
, and
Causse
,
R.
,
2014
, “
The Relationship Between Bore Resonance Frequencies and Playing Frequencies in Trumpets
,”
Acta Acust. Acust.
,
100
(
2
), pp.
362
374
.
10.
Petiot
,
J. F.
, and
Gilbert
,
J.
,
2013
, “
Comparison of Trumpets' Sounds Played by a Musician or Simulated by Physical Modelling
,”
Acta Acust. Acust.
,
99
(4), pp.
629
641
.
11.
Woodhouse
,
J.
,
Manuel
,
E. K. Y.
,
Smith
,
L. A.
,
Wheble
,
A. J. C.
, and
Fritz
,
C.
,
2012
, “
Perceptual Thresholds for Acoustical Guitar Models
,”
Acta Acust. Acust.
,
98
(
3
), pp.
475
486
.
12.
Gilbert
,
J.
,
Kergomard
,
J.
, and
Ngoya
,
E.
,
1989
, “
Calculation of the Steady-State Oscillations of a Clarinet Using the Harmonic Balance Technique
,”
J. Acoust. Soc. Am.
,
86
(
1
), pp.
35
41
.
13.
Dalmont
,
J. P.
, and
Le Roux
,
J. C.
,
2008
, “
A New Impedance Sensor for Wind Instruments
,”
J. Acoust. Soc. Am.
,
125
(
5
), p.
3014
.
14.
Tournemenne
,
R.
,
Petiot
,
J. F.
, and
Gilbert
,
J.
,
2016
, “
The Capacity for Simulation by Physical Modeling to Elicit Perceptual Differences Between Trumpet Sounds
,”
Acta Acust. Acust.
,
102
(
6
), pp.
1072
1081
.
15.
Cullen
,
J.
,
Gilbert
,
J.
, and
Campbell
,
M.
,
2000
, “
Brass Instruments: Linear Stability Analysis and Experiments With an Artificial Mouth
,”
Acta Acust. Acust.
,
86
(
4
), pp.
704
724
.
16.
Fletcher
,
N. H.
, and
Tarnopolsky
,
A.
,
1999
, “
Blowing Pressure, Power, and Spectrum in Trumpet Playing
,”
J. Acoust. Soc. Am.
,
105
(
2
), pp.
874
881
.
17.
Audet
,
C.
, and
Dennis
, Jr.,
J. E.
,
2006
, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,”
SIAM J. Optim.
,
17
(
1
), pp.
188
217
.
18.
Audet
,
C.
,
Ianni
,
A.
,
Le Digabel
,
S.
, and
Tribes
,
C.
,
2014
, “
Reducing the Number of Function Evaluations in Mesh Adaptive Direct Search Algorithms
,”
SIAM J. Optim.
,
24
(
2
), pp.
621
642
.
19.
Le Digabel
,
S.
,
2011
, “
Algorithm 909: NOMAD: Nonlinear Optimization With the MADS Algorithm
,”
ACM Trans. Math. Software
,
37
(
4
), pp.
44:1
44:15
.
20.
Booker
,
A. J.
,
Dennis
, Jr.,
J. E.
,
Frank
,
P. D.
,
Serafini
,
D. B.
,
Torczon
,
V.
, and
Trosset
,
M. W.
,
1999
, “
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
,”
Struct. Multidiscip. Optim.
,
17
(
1
), pp.
1
13
.
21.
Talgorn
,
B.
,
Le Digabel
,
S.
, and
Kokkolaras
,
M.
,
2015
, “
Statistical Surrogate Formulations for Simulation-Based Design Optimization
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021405
.
22.
Goel
,
T.
,
Haftka
,
R. T.
,
Shyy
,
W.
, and
Queipo
,
N. V.
,
2007
, “
Ensemble of Surrogates
,”
Struct. Multidiscip. Optim.
,
33
(
3
), pp.
199
216
.
23.
Viana
,
F. A. C.
,
Haftka
,
R. T.
,
Steffen
,
J. V.
,
Butkewitsch
,
S.
, and
Leal
,
M. F.
,
2008
, “
Ensemble of Surrogates: A Framework Based on Minimization of the Mean Integrated Square Error
,”
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Apr. 7–10
, Schaumburg, IL.
24.
Acar
,
E.
, and
Rais-Rohani
,
M.
,
2008
, “
Ensemble of Metamodels With Optimized Weight Factors
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
279
294
.
25.
Audet
,
C.
,
Kokkolaras
,
M.
,
Le Digabel
,
S.
, and
Talgorn
,
B.
,
2016
, “
Order-Based Error for Managing Ensembles of Surrogates in Derivative-Free Optimization
,” Les Cahiers du GERAD, Technical Report No. G-2016-36.
26.
Müller
,
J.
, and
Piché
,
R.
,
2011
, “
Mixture Surrogate Models Based on Dempster-Shafer Theory for Global Optimization Problems
,”
J. Global Optim.
,
51
(
1
), pp.
79
104
.
27.
Queipo
,
N.
,
Haftka
,
R.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucher
,
P.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
28.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2001
,
The Elements of Statistical Learning
, (Springer Series in Statistics),
Springer
,
Berlin
.
29.
Buhmann
,
M.
,
2003
,
Radial Basis Functions: Theory and Implementations
, (Cambridge Monographs on Applied and Computational Mathematics),
Cambridge University Press
, New York.
30.
Viana
,
F. A.
,
Haftka
,
R. T.
, and
Watson
,
L. T.
,
2013
, “
Efficient Global Optimization Algorithm Assisted by Multiple Surrogate Techniques
,”
J. Global Optim.
,
56
(
2
), pp.
669
689
.
31.
Goel
,
T.
, and
Stander
,
N.
,
2009
, “
Comparing Three Error Criteria for Selecting Radial Basis Function Network Topology
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
27–29
), pp.
2137
2150
.
32.
Varma
,
S.
, and
Simon
,
R.
,
2006
, “
Bias in Error Estimation When Using Cross-Validation for Model Selection
,”
BMC Bioinf.
,
7
(
1
), p.
91
.
33.
Viana
,
F. A. C.
,
Picheny
,
V.
, and
Haftka
,
R. T.
,
2009
, “
Conservative Prediction Via Safety Margin: Design Through Cross-Validation and Benefits of Multiple Surrogates
,”
ASME
Paper No. DETC2009-87053.
You do not currently have access to this content.