Over the last two decades, consumers have become increasingly aware and desiring of sustainable products. However, little attention has been paid to developing conceptual design methods that explicitly take into account environmental impact. This paper contributes a method of automated function component generation, and guided down-selection and decision-making based upon environmental impact. The environmental impact of functions has been calculated for 17 of the products found in the Design Repository using ReCiPe scoring in SimaPRO. A hierarchical Bayesian approach is used to estimate the potential environmental impacts of specific functions when realized into components. Previously, product environmental impacts were calculated after a product was developed to the component design stage. The method developed in this paper could be used to provide a criticality ranking based on which functional solutions historically have the greatest risk of causing high environmental impact. The method is demonstrated using a simple clock system as an example. A comparative case study of two phone chargers for use in third-world countries demonstrates the decision-making capabilities of this method, and shows that it is possible to compare the environmental impact of alternative function structures during the conceptual stage of design. With the method presented in this paper, it is now possible to make early functional modeling design decisions specifically taking into account historical environmental impact of functionally similar products.

References

References
1.
Fiksel
,
J.
,
2009
,
Design for Environment: A Guide to Sustainable Product Development
,
2nd ed.
,
McGraw-Hill
,
New York
.
2.
Chiu
,
M.-C.
, and
Chu
,
C.-H.
,
2012
, “
Review of Sustainable Product Design from Life Cycle Perspectives
,”
Int. J. Precis. Eng. Manuf.
,
13
(
7
), pp.
1259
1272
.
3.
Otto
,
K.
, and
Wood
,
K. L.
,
2000
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
1st ed.
,
Pearson
,
Upper Saddle River, NJ
.
4.
Gilchrist
,
B.
,
Van Bossuyt
,
D. L.
,
Tumer
,
I. Y.
,
Arlitt
,
R.
,
Stone
,
R. B.
, and
Haapala
,
K. R.
,
2013
, “
Functional Impact Comparison of Common and Innovative Products
,”
ASME
Paper No. DETC2013-12599.
5.
Short
,
A.
, and
Van Bossuyt
,
D.
,
2015
, “
Rerouting Failure Flows Using Logic Blocks in Functional Models for Improved System Robustness: Failure Flow Decision Functions
,”
ICED
, Milan, Italy, July 27–30, pp.
031
040
.
6.
Stack
,
C.
, and
Van Bossuyt
,
D.
,
2015
, “
Toward a Functional Failure Modeling Method of Representing Prognostic Systems During the Early Phases of Design
,”
ASME
Paper No. DETC2015-46400.
7.
Slater
,
M.
, and
Van Bossuyt
,
D.
,
2015
, “
Toward a Dedicated Failure Flow Arrestor Function Methodology
,”
ASME
Paper No. DETC2015-46270.
8.
O'Halloran
,
B.
,
Papakonstantinou
,
N.
, and
Van Bossuyt
,
D.
,
2015
, “
Modeling of Function Failure Propagation Across Uncoupled Systems
,”
2015 Annual Reliability and Maintainability Symposium
(
RAMS
), Jan. 26–29.
9.
Design Engineering Laboratory
,
2015
, “
Design Repository
,” Oregon State University Design Engineering Lab, Corvallis, OR, accessed Jan. 12, 2015, http://design.engr.oregonstate.edu
10.
PRé Sustainability
,
2014
, “
SimaPro
,” PRé Sustainability, Amersfoort, The Netherlands, accessed June 5, 2014, http://www.pre-sustainability.com/simapro-lca-software
11.
Goedkoop
,
M.
,
Heijungs
,
R.
,
Huijbregts
,
M.
,
De Schryver
,
A.
,
Struijs
,
J.
, and
Van Zelm
,
R.
,
2009
, “
ReCiPe 2008
,” Ministry of Housing, Spatial Planning, and the Environment (
VROM)
, Amsterdam, The Netherlands.
12.
Stamatis
,
D. H.
,
2003
,
Failure Mode and Effect Analysis: FMEA from Theory to Execution
,
ASQ Quality Press
,
Milaukee, WI
.
13.
Stone
,
R.
, and
Wood
,
K.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
14.
McAdams
,
D.
,
Stone
,
R.
, and
Wood
,
K.
,
1999
, “
Functional Interdependence and Product Similarity Based on Customer Needs
,”
Res. Eng. Des.
,
11
(
1
), pp.
1
19
.
15.
Sauers
,
L.
, and
Shekhar
,
M.
,
2009
, “
Sustainablity Innovation in the Consumer Products Industry
,”
Chem. Eng. Process
,
105
(
1
), pp.
36
44
.
16.
Abele
,
E.
,
Anderl
,
R.
, and
Birkhofer
,
H.
,
2005
,
Environmentally-Friendly Product Development: Methods and Tools
,
Springer
,
London
.
17.
European Union
,
2003
, “
Waste Electronic and Electrical Equipment
,” European Union, Strasbourg, France, Standard No. Directive 2002/96/EC.
18.
European Union
,
2003
, “
Restriction of Hazardous Substances
,” European Union, Strasbourg, France, Standard No. Directive 2002/95/EC.
19.
Cusack
,
P.
, and
Perrett
,
T.
,
2006
, “
The Eu Rohs Directive and Its Implications for the Plastics Industry
,”
Plast., Addit. Compd.
,
8
(
3
), pp.
46
49
.
20.
Arundel
,
A.
, and
Kemp
,
R.
,
2009
, “
Measuring Eco-Innovation
,”
UNU-MERIT
.
21.
Otto
,
K.
, and
Wood
,
K.
,
1998
, “
Product Evolution: A Reverse Engineering and Redesign Methodology
,”
Res. Eng. Des.
,
10
(
4
), pp.
226
243
.
22.
Hartikainen
,
T.
,
Korpela
,
A.
,
Lehtonen
,
J.
, and
Mikkonen
,
R.
,
2004
, “
A Comparative Life-Cycle Assessment Between NBTI and Copper Magnets
,”
IEEE Trans. Appl. Supercond.
,
14
(
2
), pp.
1882
1885
.
23.
Collado-Ruiz
,
D.
, and
Ostad-Ahmad-Ghorabi
,
H.
,
2009
, “
Comparing LCA Results out of Competing Products: Developing Reference Ranges From a Product Family Approach
,”
J. Cleaner Prod.
,
18
(
4
), pp.
355
364
.
24.
Eastlick
,
D.
,
Sahakian
,
M.
, and
Haapala
,
K.
,
2011
, “
Sustainable Manufacturing Analysis for Titanium Components
,”
ASME
Paper No. DETC2011-48854.
25.
Chang
,
H.
, and
Chen
,
J.
,
2003
, “
Eco-Innovative Examples for 40 Triz Inventive Principles
,”
TRIZ J.
,
2003
, pp.
1
16
.
26.
Chang
,
H. T.
, and
Chen
,
J. L.
,
2003
, “
An Eco-Innovative Design Method Based on Design-Around Approach
,”
3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing
(
EcoDesign’03
), Dec. 8–11, pp.
575
582
.
27.
Jones
,
E.
, and
Harrison
,
D.
,
2000
, “
Investigating the Use of Triz in Eco-Innovation
,”
TRIZ J.
,
2000
, p.
9
.
28.
Chen
,
J.
, and
Liu
,
C.
,
2001
, “
An Eco-Innovative Design Approach Incorporating the Triz Method Without Contradiction Analysis
,”
J. Sustain. Product Des.
,
1
(
4
), pp.
263
272
.
29.
Yen
,
S.-B.
, and
Chen
,
T.
,
2005
, “
An Eco-Innovative Tool by Integrating FMEA and Triz Methods
,”
Environmentally Conscious Design and Inverse Manufacturing
,
IEEE
Fourth International Symposium on Eco Design
2005
, Dec. 12–14, pp.
678
683
.
30.
Yang
,
C. J.
, and
Chen
,
J. L.
,
2011
, “
Accelerating Preliminary Eco-Innovation Design for Products That Integrates Case-Based Reasoning and Triz Method
,”
J. Cleaner Prod.
,
19
(
9
), pp.
998
1006
.
31.
Russo
,
D.
,
Regazzoni
,
D.
, and
Montecchi
,
T.
,
2011
, “
Eco-Design With Triz Laws of Evolution
,”
Procedia Eng.
,
9
, pp.
311
322
.
32.
Bocken
,
N.
,
Allwood
,
J.
,
Willey
,
A.
, and
King
,
J.
,
2011
, “
Development of an Eco-Ideation Tool to Identify Stepwise Greenhouse Gas Emissions Reduction Options for Consumer Goods
,”
J. Cleaner Prod.
,
19
(
12
), pp.
1279
1287
.
33.
Yang
,
C. J.
, and
Chen
,
J. L.
,
2012
, “
Forecasting the Design of Eco-Products by Integrating Triz Evolution Patterns With CBR and Simple LCA Methods
,”
Expert Syst. Appl.
,
39
(
3
), pp.
2884
2892
.
34.
Kitamura
,
Y.
, and
Mizoguchi
,
R.
,
2004
, “
Ontology-Based Systematization of Functional Knowledge
,”
J. Eng. Des.
,
15
(
4
), pp.
327
351
.
35.
Nix
,
A. A.
,
Sherrett
,
B.
, and
Stone
,
R. B.
,
2011
, “
A Function Based Approach to Triz
,”
ASME
Paper No. DETC2011-47973.
36.
Cascini
,
G.
,
Rotini
,
F.
, and
Russo
,
D.
,
2009
, “
Functional Modeling for Triz-Based Evolutionary Analyses
,”
17th International Conference on Engineering Design, Design Methods and Tools (pt. 1)
, Palo Alto, CA, Aug. 24–27, Vol. 5, pp.
371
384
.
37.
Yang
,
K.
, and
Zhang
,
H.
,
2000
, “
A Comparison of Triz and Axiomatic Design
,”
TRIZ J.
,
8
.
38.
Zhang
,
R.
,
Cha
,
J.
, and
Lu
,
Y.
,
2007
, “
A Conceptual Design Model Using Axiomatic Design, Functional Basis and Triz
,”
IEEE
International Conference on Industrial Engineering and Engineering Management
, Dec. 2–4, pp.
1807
1810
.
39.
Kitamura
,
Y.
,
Kashiwase
,
M.
,
Fuse
,
M.
, and
Mizoguchi
,
R.
,
2004
, “
Deployment of an Ontological Framework of Functional Design Knowledge
,”
Adv. Eng. Inf.
,
18
(
2
), pp.
115
127
.
40.
ISO
,
2006
, “
14040: Environmental Management–Life Cycle Assessment–Principles and Framework
,” British Standards Institution, London, Standard No. ISO 14040.
41.
Graedel
,
T. E.
, and
Graedel
,
T. E.
,
1998
,
Streamlined Life-Cycle Assessment
,
Prentice Hall
,
Upper Saddle River, NJ
.
42.
Kobayashi
,
H.
,
2005
, “
Strategic Evolution of Eco-Products: A Product Life Cycle Planning Methodology
,”
Res. Eng. Des.
,
16
(
1–2
), pp.
1
16
.
43.
Azapagic
,
A.
,
1999
, “
Life Cycle Assessment and Its Application to Process Selection, Design and Optimisation
,”
Chem. Eng. J.
,
73
(
1
), pp.
1
21
.
44.
Kaebemick
,
H.
,
Sun
,
M.
, and
Kara
,
S.
,
2003
, “
Simplified Lifecycle Assessment for the Early Design Stages of Industrial Products
,”
CIRP Ann. Manuf. Technol.
,
52
(
1
), pp.
25
28
.
45.
Curran
,
M. A.
,
1996
, “
Environmental Life-Cycle Assessment
,”
Int. J. Life Cycle Assess.
,
1
(
3
), pp.
179
179
.
46.
DuPont
,
B.
, and
Wisthof
,
A.
,
2015
, “
Exploring the Retention of Sustainable Design Principles in Engineering Practice Through Design Education
,”
ASME
Paper No. DETC2015-46778.
47.
Keoleian
,
G. A.
,
1993
, “
The Application of Life Cycle Assessment to Design
,”
J. Cleaner Prod.
,
1
(
3
), pp.
143
149
.
48.
Chan
,
L.-K.
, and
Wu
,
M.-L.
,
2002
, “
Quality Function Deployment: A Literature Review
,”
Eur. J. Oper. Res.
,
143
(
3
), pp.
463
497
.
49.
Akao
,
Y.
,
2004
,
Quality Function Deployment
,
Productivity Press
,
New York
.
50.
Sakao
,
T.
,
2007
, “
A QFD-Centered Design Methodology for Environmentally Conscious Product Design
,”
Int. J. Prod. Res.
,
45
(
18–19
), pp.
4143
4162
.
51.
Masui
,
K.
,
Sakao
,
T.
,
Kobayashi
,
M.
, and
Inaba
,
A.
,
2003
, “
Applying Quality Function Deployment to Environmentally Conscious Design
,”
Int. J. Qual. Reliab. Manage.
,
20
(
1
), pp.
90
106
.
52.
Sakao
,
T.
,
Kaneko
,
K.
,
Masui
,
K.
, and
Tsubaki
,
H.
,
2008
, “
Combinatorial Usage of QFDE and LCA for Environmentally Conscious Design
,”
The Grammar of Technology Development
,
Springer
,
Tokyo
, pp.
45
59
.
53.
Zhang
,
Y.
, “
Green QFD-II: A Life Cycle Approach for Environmentally Conscious Manufacturing by Integrating LCA and LCC into QFD Matrices
,”
Int. J. Prod. Res.
,
37
(
5
), pp.
1075
1091
.
54.
Gillespie
,
E.
,
2008
, “
Stemming the Tide of ‘Greenwash’
,”
Consum. Policy Rev.
,
18
(
3
), pp.
79
84
.
55.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
,
2000
, “
Using Quantitative Functional Models to Develop Product Architectures
,”
Des. Stud.
,
21
(
3
), pp.
239
260
.
56.
Bryant
,
C. R.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2005
, “
Concept Generation From the Functional Basis of Design
,”
ICED 05
:
15th International Conference on Engineering Design: Engineering Design and the Global Economy
, Engineers Australia, p.
1702
.
57.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
58.
Hirtz
,
J. M.
,
Stone
,
R. B.
,
Szykman
,
S.
,
McAdams
,
D.
, and
Wood
,
K. L.
,
2001
, “
Evolving a Functional Basis for Engineering Design
,”
ASME
Paper No. DETC2001/DTM-21688.
59.
Bohm
,
M.
,
Stone
,
R.
, and
Szykman
,
S.
,
2005
, “
Enhancing Visual Product Representations for Advanced Design Repository Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
4
), pp.
360
372
.
60.
Bohm
,
M.
,
Stone
,
R.
,
Simpson
,
T.
, and
Steva
,
E.
,
2006
, “
Introduction of a Data Schema: The Inner Workings of a Design Repository
,”
ASME
Paper No. DETC2006-99518.
61.
Bohm
,
M.
,
Haapala
,
K.
,
Poppa
,
K.
,
Stone
,
R.
, and
Tumer
,
I.
,
2010
, “
Integrating Life Cycle Assessment Into the Conceputal Phase of Design Using a Design Repository
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091005
.
62.
Lucero
,
B.
,
Viswanathan
,
V.
,
Linsey
,
J.
, and
Turner
,
C.
,
2013
, “
Analysis of Critical Functionality for Meta Analogy Via Performance Specification
,”
ASME
Paper No. DETC2013-13472.
63.
Tomko
,
M.
,
Lucero
,
B.
,
Turner
,
C.
, and
Linsey
,
J.
,
2015
, “
Establishing Functional Concepts Vital for Design by Analogy
,”
IEEE Frontiers in Education Conference
(
FIE
), Oct. 21–24.
64.
Morgenthaler
,
P. R.
,
2016
, “
Analogy Matching With Function, Flow and Performance
,”
Ph.D. dissertation
, Colorado School of Mines, Arthur Lakes Library, Golden, CO.
65.
Yuan
,
L.
,
Liu
,
Y.
,
Sun
,
Z.
,
Cao
,
Y.
, and
Qamar
,
A.
,
2016
, “
A Hybrid Approach for the Automation of Functional Decomposition in Conceptual Design
,”
J. Eng. Des.
,
27
(
4–6
), pp.
333
360
.
66.
Ebro
,
M.
, and
Howard
,
T. J.
,
2016
, “
Robust Design Principles for Reducing Variation in Functional Performance
,”
J. Eng. Des.
,
27
(
1–3
), pp.
75
92
.
67.
Fiorineschi
,
L.
,
Rotini
,
F.
, and
Rissone
,
P.
,
2016
, “
A New Conceptual Design Approach for Overcoming the Flaws of Functional Decomposition and Morphology
,”
J. Eng. Des.
,
27
(
7
), pp.
1
31
.
68.
Shimomura
,
Y.
,
Yoshioka
,
M.
,
Takeda
,
H.
,
Umeda
,
Y.
, and
Tomiyama
,
T.
,
1998
, “
Representation of Design Object Based on the Functional Evolution Process Model
,”
ASME J. Mech. Des.
,
120
(
2
), pp.
221
229
.
69.
Williams
,
C. B.
,
Mistree
,
F.
, and
Rosen
,
D. W.
,
2011
, “
A Functional Classification Framework for the Conceptual Design of Additive Manufacturing Technologies
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121002
.
70.
Gu
,
C.-C.
,
Hu
,
J.
,
Peng
,
Y.-H.
, and
Li
,
S.
,
2012
, “
FCBS Model for Functional Knowledge Representation in Conceptual Design
,”
J. Eng. Des.
,
23
(
8
), pp.
577
596
.
71.
Deng
,
Y.-M.
,
Tor
,
S.
, and
Britton
,
G.
,
2000
, “
A Dual-Stage Functional Modelling Framework With Multi-Level Design Knowledge for Conceptual Mechanical Design
,”
J. Eng. Des.
,
11
(
4
), pp.
347
375
.
72.
Malmiry
,
R. B.
,
Dantan
,
J.-Y.
,
Pailhès
,
J.
, and
Antoine
,
J.-F.
,
2016
, “
A Product Functional Modelling Approach Based on the Energy Flow by Using Characteristics-Properties Modelling
,”
J. Eng. Des.
,
27
(
12
), pp.
1
27
.
73.
Park
,
H.
,
Son
,
J.-S.
, and
Lee
,
K.-H.
,
2008
, “
Design Evaluation of Digital Consumer Products Using Virtual Reality-Based Functional Behaviour Simulation
,”
J. Eng. Des.
,
19
(
4
), pp.
359
375
.
74.
van Eck
,
D.
,
2011
, “
Supporting Design Knowledge Exchange by Converting Models of Functional Decomposition
,”
J. Eng. Des.
,
22
(
11–12
), pp.
839
858
.
75.
Pailhès
,
J.
,
Sallaou
,
M.
,
Nadeau
,
J.-P.
, and
Fadel
,
G. M.
,
2011
, “
Energy Based Functional Decomposition in Preliminary Design
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051011
.
76.
Booth
,
J. W.
,
Reid
,
T. N.
,
Eckert
,
C.
, and
Ramani
,
K.
,
2015
, “
Comparing Functional Analysis Methods for Product Dissection Tasks
,”
ASME J. Mech. Des.
,
137
(
8
), p.
081101
.
77.
Sen
,
C.
,
Caldwell
,
B. W.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Evaluation of the Functional Basis Using an Information Theoretic Approach
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
24
(01), pp.
87
105
.
78.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Topological Information Content and Expressiveness of Function Models in Mechanical Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031003
.
79.
Caldwell
,
B. W.
,
Sen
,
C.
,
Mocko
,
G. M.
, and
Summers
,
J. D.
,
2011
, “
An Empirical Study of the Expressiveness of the Functional Basis
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
25
(03), pp.
273
287
.
80.
Caldwell
,
B. W.
,
Sen
,
C.
,
Mocko
,
G. M.
,
Summers
,
J. D.
, and
Fadel
,
G. M.
,
2008
, “
Empirical Examination of the Functional Basis and Design Repository
,”
Design Computing and Cognition’08.
Springer, The Netherlands, pp.
261
280
.
81.
Richardson
,
J.
, III.
,
Summers
,
J.
, and
Mocko
,
G.
,
2011
, “
Function Representations in Morphological Charts: An Experimental Study on Variety and Novelty on Means Generated
,” 21st
CIRP
Design Conference Interdisciplinary Design
, p.
76
.
82.
Thomas
,
J.
,
Sen
,
C.
,
Mocko
,
G. M.
,
Summers
,
J. D.
, and
Fadel
,
G. M.
,
2009
, “
Investigation of the Interpretability of Three Function Structure Representations: A User Study
,”
ASME
Paper No. DETC2009-87381.
83.
Sen
,
C.
,
2012
, “
A Formal Representation of Mechanical Functions to Support Physics-Based Computational Reasoning in Early Mechanical Design
,”
Ph.D. dissertation
, Clemson University, Clemson, SC.
84.
Sen
,
C.
, and
Summers
,
J. D.
,
2012
, “
A Pilot Protocol Study on How Designers Construct Function Structures in Novel Design
,”
5th International Conference on Design Computing and Cognition
, College Station, TX, pp.
247
264
.
85.
Mathieson
,
J. L.
,
Shanthakumar
,
A.
,
Sen
,
C.
,
Arlitt
,
R.
,
Summers
,
J. D.
, and
Stone
,
R.
,
2011
, “
Complexity as a Surrogate Mapping Between Function Models and Market Value
,”
ASME
Paper No. DETC2011-47481.
86.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G.
,
2010
, “
Toward a Formal Representation of the Functional Basis Verbs
,”
8th International Symposium on Tools and Methods of Competitive Engineering (TMCE)
.
87.
Lucero
,
B.
,
Viswanathan
,
V. K.
,
Linsey
,
J. S.
, and
Turner
,
C. J.
,
2014
, “
Identifying Critical Functions for Use Across Engineering Design Domains
,”
ASME J. Mech. Des.
,
136
(
12
), p.
121101
.
88.
Viswanathan
,
V.
,
Ngo
,
P.
,
Turner
,
C.
, and
Linsey
,
J.
,
2013
, “
Innovation in Graduate Projects: Learning to Identify Critical Functions
,”
IEEE Frontiers in Education Conference
(
FIE
), Oct. 23–26, pp.
1419
1425
.
89.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Van Wie
,
M.
,
2005
, “
The Function-Failure Design Method
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
397
407
.
90.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Stock
,
M. E.
,
2005
, “
Linking Product Functionality to Historic Failures to Improve Failure Analysis in Design
,”
Res. Eng. Des.
,
16
(
1–2
), pp.
96
108
.
91.
Tumer
,
I. Y.
,
Stone
,
R. B.
, and
Bell
,
D. G.
,
2003
, “
Requirements for a Failure Mode Taxonomy for Use in Conceptual Design
,”
ICED 03
,
The 14th International Conference on Engineering Design
, Stockholm, Sweden, Aug. 19–Aug. 23. Paper No. DS31_1612FPB.
92.
Kurtoglu
,
T.
,
Campbell
,
M. I.
,
Bryant
,
C. R.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2005
, “
Deriving a Component Basis for Computational Functional Synthesis
,”
ICED 05
:
15th International Conference on Engineering Design: Engineering Design and the Global Economy
, Engineers Australia, Paper No. DS35_123.1.
93.
Hutcheson
,
R. S.
,
McAdams
,
D. A.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2006
, “
A Function-Based Methodology for Analyzing Critical Events
,”
ASME
Paper No. DETC2006-99535.
94.
Ramp
,
I. J.
, and
Van Bossuyt
,
D. L.
,
2014
, “
Toward an Automated Model-Based Geometric Method of Representing Function Failure Propagation Across Uncoupled Systems
,”
ASME
Paper No. IMECE2014-36514.
95.
Kang
,
S. W.
, and
Tucker
,
C.
,
2016
, “
An Automated Approach to Quantifying Functional Interactions by Mining Large-Scale Product Specification Data
,”
J. Eng. Des.
,
27
(
1–3
), pp.
1
24
.
96.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
AIEDAM
,
19
(02), pp.
113
132
.
97.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M.
,
Goel
,
A. K.
, and
Yen
,
J.
,
2011
, “
Dane: Fostering Creativity in and Through Biologically Inspired Design
,”
Design Creativity 2010
,
Springer
,
London
, pp.
115
122
.
98.
Devanathan
,
S.
,
Koushik
,
P.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2009
, “
Integration of Sustainability Into Early Design Through Working Knowledge Model and Visual Tools
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081004
.
99.
Bernstein
,
W.
,
Ramanujan
,
D.
,
Devanathan
,
S.
,
Zhao
,
F.
,
Sutherland
,
J.
, and
Ramani
,
K.
,
2010
, “
Function Impact Matrix for Sustainable Concept Generation: A Designer's Perspective
,”
ASME
Paper No. DETC2010-28340.
100.
Gilchrist
,
B.
,
Tumer
,
I.
,
Stone
,
R.
,
Gao
,
Q.
, and
Haapala
,
K.
,
2012
, “
Comparison of Environmental Impacts of Innovative and Common Products
,”
ASME
Paper No. DETC2012-70559.
101.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
,
2014
,
Bayesian Data Analysis
, Vol.
2
,
Taylor & Francis
,
London
.
102.
Chen
,
J.
,
Hubbard
,
S. S.
,
Williams
,
K. H.
,
Flores Orozco
,
A.
, and
Kemna
,
A.
,
2012
, “
Estimating the Spatiotemporal Distribution of Geochemical Parameters Associated With Biostimulation Using Spectral Induced Polarization Data and Hierarchical Bayesian Models
,”
Water Resour. Res.
,
48
(
5
).
103.
Tobias
,
J. L.
,
2001
, “
Forecasting Output Growth Rates and Median Output Growth Rates: A Hierarchical Bayesian Approach
,”
J. Forecasting
,
20
(
5
), pp.
297
314
.
104.
Huang
,
S.
, and
Renals
,
S.
,
2010
, “
Hierarchical Bayesian Language Models for Conversational Speech Recognition
,”
IEEE Trans. Audio, Speech, Lang. Process.
,
18
(
8
), pp.
1941
1954
.
105.
Taranto
,
C.
,
Di Mauro
,
N.
, and
Esposito
,
F.
,
2011
, “
rsLDA: A Bayesian Hierarchical Model for Relational Learning
,”
2011 International Conference on Data and Knowledge Engineering
(
ICDKE
), Sept. 6, pp.
68
74
.
106.
Johnson
,
V. E.
,
Moosman
,
A.
, and
Cotter
,
P.
,
2005
, “
A Hierarchical Model for Estimating the Early Reliability of Complex Systems
,”
IEEE Trans. Reliab.
,
54
(
2
), pp.
224
231
.
107.
O'Halloran
,
B. M.
,
2013
, “
A Framework to Model Reliability and Failures in Complex Systems During the Early Engineering Design Process
,”
Ph.D. dissertation
, Oregon State University, Corvallis, OR.
108.
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
, and
Koppelman
,
F. S.
,
2010
, “
Integrated Bayesian Hierarchical Choice Modeling to Capture Heterogeneous Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121010
.
109.
Beck
,
J. L.
, and
Au
,
S.-K.
,
2002
, “
Bayesian Updating of Structural Models and Reliability Using Markov Chain Monte Carlo Simulation
,”
J. Eng. Mech.
,
128
(
4
), pp.
380
391
.
110.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2005
, “
Linking Marketing and Engineering Product Design Decisions Via Analytical Target Cascading*
,”
J. Prod. Innov. Manage.
,
22
(
1
), pp.
42
62
.
111.
Vadde
,
S.
,
Allen
,
J.
, and
Mistree
,
F.
,
1994
, “
Compromise Decision Support Problems for Hierarchical Design Involving Uncertainty
,”
Comput. Struct.
,
52
(
4
), pp.
645
658
.
112.
O'Halloran
,
B.
,
Stone
,
R.
, and
Tumer
,
I.
,
2012
, “
A Failure Modes and Mechanisms Naming Taxonomy
,”
2012 Annual Reliability and Maintainability Symposium
(
RAMS
), Jan. 23–26.
113.
Lough
,
K. G.
,
Stone
,
R.
, and
Tumer
,
I. Y.
,
2009
, “
The Risk in Early Design Method
,”
J. Eng. Des.
,
20
(
2
), pp.
155
173
.
114.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051401
.
115.
Kurtoglu
,
T.
,
Tumer
,
I. Y.
, and
Jensen
,
D. C.
,
2010
, “
A Functional Failure Reasoning Methodology for Evaluation of Conceptual System Architectures
,”
Res. Eng. Des.
,
21
(
4
), pp.
209
234
.
116.
Collins
,
J. A.
,
Hagan
,
B. T.
, and
Bratt
,
H. H.
,
1976
, “
The Failure-Experience Matrix—A Useful Design Tool
,”
ASME J. Manuf. Sci. Eng.
,
98
(
3
), pp.
1074
1079
.
117.
O'Halloran
,
B.
,
Jensen
,
D.
,
Tumer
,
I.
,
Kurtoglu
,
T.
, and
Stone
,
R.
,
2013
, “
A Framework to Generate Fault-Based Behavior Models for Complex Systems Design
,”
2013 Annual Reliability and Maintainability Symposium
(
RAMS
), Jan. 28–31.
118.
Ward
,
I.
, Jr.
,
1963
, “
Hierarchical Grouping to Optimize An Objective Function
,”
J. Am. Stat. Assoc.
,
58
(
301
), pp.
236
244
.
119.
Tanis
,
E. A.
, and
Hogg
,
R. V.
,
2001
,
Probability and Statistical Inference
,
Prentice Hall
,
Upper Saddle River, NJ
.
120.
Polak
,
P.
,
2009
,
Out of Poverty: What Works When Traditional Approaches Fail
,
Berrett-Koehler Publishers
,
Oakland, CA
.
121.
Austin-Breneman
,
J.
, and
Yang
,
M.
,
2013
, “
Design for Micro-Enterprise: An Approach to Product Design for Emerging Markets
,”
ASME
Paper No. DETC2013-12677.
122.
International Energy Agency
,
2016
, “
Energy Poverty
,” International Energy Agency, Paris, accessed July 27 2016, http://www.iea.org/topics/energypoverty
123.
Asongu
,
S. A.
,
2013
, “
How Has Mobile Phone Penetration Stimulated Financial Development in Africa?
,”
J. Afr. Bus.
,
14
(
1
), pp.
7
18
.
124.
Mbiti
,
I.
, and
Weil
,
D. N.
,
2011
, “
Mobile Banking: The Impact of m-Pesa in Kenya
,” National Bureau of Economic Research,
NBER Working Paper No. 17129
.
125.
Aker
,
J. C.
, and
Mbiti
,
I. M.
,
2010
, “
Mobile Phones and Economic Development in Africa
,”
J. Econ. Perspect.
,
24
(
3
), pp.
207
232
.
126.
Ali
,
K.
,
Mohd
,
W. S. W.
,
Rifai
,
D.
,
Ahmed
,
M. I.
,
Muzzakir
,
A.
, and
Asyraf
,
T. A.
,
2016
, “
Design and Implementation of Portable Mobile Phone Charger Using Multi Directional Wind Turbine Extract
,”
Indian J. Sci. Technol.
,
9
(
9
), pp.
1
6
.
127.
Wyche
,
S. P.
, and
Murphy
,
L. L.
,
2013
, “
Powering the Cellphone Revolution: Findings From Mobile Phone Charging Trials in Off-Grid Kenya
,”
SIGCHI
Conference on Human Factors in Computing Systems
, Paris, Apr. 27–May 2, ACM, pp.
1959
1968
.
128.
Johnson
,
N. G.
, and
Granato
,
M.
,
2014
, “
Single Cell Battery Charger for Portable Electronic Devices in Developing Countries
,”
ASME
Paper No. DETC2014-35457.
129.
O'Shaughnessy
,
S.
,
Deasy
,
M.
,
Kinsella
,
C.
,
Doyle
,
J.
, and
Robinson
,
A.
,
2013
, “
Small Scale Electricity Generation From a Portable Biomass Cookstove: Prototype Design and Preliminary Results
,”
Appl. Energy
,
102
, pp.
374
385
.
130.
Tadesse
,
G.
, and
Bahiigwa
,
G.
,
2015
, “
Mobile Phones and Farmers' Marketing Decisions in Ethiopia
,”
World Dev.
,
68
, pp.
296
307
.
131.
Munro
,
P.
,
van der Horst
,
G.
,
Willans
,
S.
,
Kemeny
,
P.
,
Christiansen
,
A.
, and
Schiavone
,
N.
,
2016
, “
Social Enterprise Development and Renewable Energy Dissemination in Africa: The Experience of the Community Charging Station Model in Sierra Leone
,”
Prog. Dev. Stud.
,
16
(
1
), pp.
24
38
.
132.
Asongu
,
S.
,
2015
, “
The Impact of Mobile Phone Penetration on African Inequality
,”
Int. J. Soc. Econ.
,
42
(
8
), pp.
706
716
.
133.
Yoe
,
C.
,
2011
,
Principles of Risk Analysis: Decision Making Under Uncertainty
,
CRC Press
,
Boca Raton, FL
.
134.
Lilliefors
,
H. W.
,
1967
, “
On the Kolmogorov–Smirnov Test for Normality With Mean and Variance Unknown
,”
J. Am. Stat. Assoc.
,
62
(
318
), pp.
399
402
.
135.
Massey
,
F. J.
, Jr.
,
1951
, “
The Kolmogorov–Smirnov Test for Goodness of Fit
,”
J. Am. Stat. Assoc.
,
46
(
253
), pp.
68
78
.
136.
McKnight
,
P. E.
, and
Najab
,
J.
,
2010
, “
Mann–Whitney U Test
,”
Corsini Encyclopedia of Psychology
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.