Gear skiving is a technique proposed a long time ago for cutting internal gears at high productivity. Until recently, many problems have prevented its widespread use. With current technological breakthroughs, however, skiving is drawing attention again. The present paper describes cutting tool parameters, which could be vital for the optimum design of skiving cutters. Cutting tool parameters include depth of cut, rake angle, and clearance angle at each point on a cutting edge. They continuously change with progress in the cutting process. The parameters are defined on the basis of an oblique cutting model, which is a three-dimensional extension of an orthogonal cutting model. The example calculations in this study revealed the following features: Although rake angles almost always remain negative, clearance angles remain positive. At the points where clearance angles are large, depths of cut are large, but rake angles are small (i.e., largely negative). The decrease in shaft angle between the cutter and working blank axes increases depths of cut and clearance angles, while reducing rake angles (i.e., yields largely negative rake angles). Meanwhile, the increase in cutter tool face offset; i.e., the axial position of a tool face measured from a reference point on the conjugate pinion, narrows the area where depths of cut and clearance angles are small, but rake angles become largely negative. These parameters could be useful for evaluating tool cutting efficiencies in internal gear skiving.

References

1.
Pittler
,
W. V.
, 1910, “
Verfahren zum Schneiden von Zahnrädern mittels eines zahnradartigen, an den Stirnflächen der Zähne mit Schneidkanten versehenen Schneidwerkzeugs
,” Patentschrift No. 243514.
2.
Stadtfeld
,
H. J.
, Dr.
,
2014
, “
Power Skiving of Cylindrical Gears on Different Machine Platforms
,”
Gear Technol.
,
2014
(January/February), pp.
25
62
.
3.
Volker
,
S.
, and
Kühlewein
,
C.
,
2009
, “
Überblick uber die Entwicklungsgeschichte und Grundlagen des Verfahrens sowie Einblick in aktuelle Forschungsaktivitäten
,” GETPRO 11/12, Marz 2009, pp.
1/10
10/10
.
4.
Sulzer
,
V. G.
,
1974
, “
Werkzeugauslegung und Spanungsgeometrie
,”
Konstruktion und Fertigung, VDI-Z
116
Nr.
8
-Juni, pp.
631
634
.
5.
Guo
,
E.
,
Hong
,
R.
,
Huang
,
X.
, and
Fang
,
C.
,
2015
, “
Research on the Cutting Mechanism of Cylindrical Gear Power Skiving
,”
Int. J. Adv. Manuf. Technol.
,
79
(1), pp.
541
550
.
6.
Schulze
,
V.
,
Kühlewein
,
C.
, and
Autenrieth
,
H.
,
2011
, “
3D-FEM Modeling of Gear Skiving to Investigate Kinematics and Chip Formation Mechanisms
,”
Adv. Mater. Res.
,
223
, pp.
46
55
.
7.
Kobialka
,
C.
,
2013
, “
Contemporary Gear Pre-Machining Solutions
,”
Gear Solutions
,
2013
(April), pp.
42
49
.
8.
Spath
,
D.
, and
Hühsam
,
A.
,
2002
, “
Skiving for High-Performance Machining of Periodic Structures
,”
Ann. CIRP
,
51
(
1
), pp.
1/4
4/4
.
9.
Guo
,
E.
,
Hong
,
R.
,
Huang
,
X.
, and
Fang
,
C.
,
2014
, “
Research on the Design of Skiving Tool for Machining Involute Gears
,”
J. Mech. Sci. Technol.
,
28
(
112
), pp.
5107
5115
.
10.
Moriwaki
,
I.
,
Nakamura
,
M.
,
Hasegawa
,
T.
,
Funamoto
,
M.
,
Uriu
,
K.
,
Murakami
,
T.
,
Nagata
,
E.
,
Kurita
,
N.
,
Tachikawa
,
T.
, and
Kobayashi
,
Y.
,
2013
, “
Tooth Geometry Design of Cylindrical Skiving Cutter for Internal Gears
,”
International Conference on Gears
, VDI-Society for Product and Process Design, Munich, Germany, Oct. 7–9, Vol.
1
, pp.
329
340
.
11.
Litvin
,
F. L.
,
1989
, “
Theory of Gearing
,” NASA Reference Publication; 1212. IV,
AVSCOM
, pp. 79–86, Technical Report No. 88-C-035.
12.
Litvin
,
F. L.
,
1989
, “
Theory of Gearing
,” NASA Reference Publication; 1212. IV.
AVSCOM
, p. 8, Technical Report No. 88-C-035.
13.
Radzevich
,
S. P.
,
2010
,
Gear Cutting Tools Fundamentals of Design and Computation
,
CRC Press
, Boca Raton, FL, pp.
705
712
.
You do not currently have access to this content.