Assembly tolerance design for spatial mechanisms is a complex engineering problem that involves a highly nonlinear dimension chain equation and challenges in simplifying the spatial mechanism matrix equation. To address the nonlinearity of the problem and the difficulty of simplifying the dimension chain equation, this paper investigates the use of the Rackwitz–Fiessler (R–F) reliability analysis method and several surrogate model methods, respectively. The tolerance analysis results obtained for a landing gear assembly problem using the R–F method and the surrogate model methods indicate that compared with the extremum method and the probability method, the R–F method allows more accurate and efficient computation of the successful assembly rate, a reasonable tolerance allocation design, and cost reductions of 37% and 16%, respectively. Moreover, the surrogate-model-based computation results show that the support vector machine (SVM) method offers the highest computational accuracy among the three investigated surrogate methods but is more time consuming, whereas the response surface method and the back propagation (BP) neural network method offer relatively low accuracy but higher calculation efficiency. Overall, all of the surrogate model methods provide good computational accuracy while requiring far less time for analysis and computation compared with the simplification of the dimension chain equation or the Monte Carlo method.

References

References
1.
Zong
,
Y.
, and
Mao
,
J.
,
2015
, “
Tolerance Optimization Design Based on the Manufacturing-Cost of Assembly Quality
,” 13th
CIRP
Conference on Computer Aided Tolerancing
, Hangzhou, China, Vol. 27, pp.
324
329
.
2.
Huang
,
X. Z.
, and
Zhang
,
Y. M.
,
2010
, “
Robust Tolerance Design for Function Generation Mechanisms With Joint Clearances
,”
Mech. Mach. Theory
,
45
(
9
), pp.
1286
1297
.
3.
Kim
,
J.
,
Song
,
W. J.
, and
Kang
,
B. S.
,
2010
, “
Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism With Dimensional Tolerance
,”
Appl. Math. Model.
,
34
(
5
), pp.
1225
1237
.
4.
Kumaraswamy
,
U.
,
Shunmugam
,
M. S.
, and
Sujatha
,
S.
,
2013
, “
A Unified Framework for Tolerance Analysis of Planer and Spatial Mechanisms Using Screw Theory
,”
Mech. Mach. Theory
,
69
(
6
), pp.
168
184
.
5.
Shah
,
J. J.
,
Yan
,
Y.
, and
Zhang
,
B. C.
,
1998
, “
Dimension and Tolerance Modeling and Transformations in Feature Based Design and Manufacturing
,”
J. Intell. Manuf.
,
9
(
5
), pp.
475
488
.
6.
Chun
,
H.
,
Kwon
,
S. J.
, and
Tak
,
T.
,
2008
, “
Multibody Approach for Tolerance Analysis and Optimization of Mechanical Systems
,”
J. Mech. Sci. Technol.
,
22
(
2
), pp.
276
286
.
7.
Zhang
,
K. F.
,
2006
, “
Aircraft Parts Assembly Error Accumulation Analysis and Tolerance Optimization Method Research
,” Ph.D. thesis, Northwestern Polytechnical University, Xi'an, China.
8.
Xu
,
B. S.
,
Huang
,
M. F.
,
Jing
,
H.
, and
Zhong
,
Y. R.
,
2013
, “
Three Dimensional Tolerance Synthesis Simulation Based on Quasi Monte Carlo Method
,”
China Mech. Eng.
,
24
(
12
), pp.
1581
1586
(in Chinese).
9.
Lehithet
,
E. A.
, and
Dindelli
,
B. A.
,
1989
, “
Tolocon: Microcomputer-Based Module for Simulation of Tolerances
,”
Manuf. Rev.
,
2
(
3
), pp.
197
188
.
10.
Greenwood
,
W. H.
, and
Chase
,
K. W.
,
1988
, “
Worst-Case Tolerance Analysis With Nonlinear Problems
,”
J. Eng. Ind.
,
110
(
3
), pp.
232
235
.
11.
Xu
,
X. S.
,
Yang
,
J. X.
,
Cao
,
Y. L.
, and
Liu
,
Y. C.
,
2008
, “
A Tolerance Analysis Method for Feasibility of Assembly
,”
Chin. Mech. Eng.
,
19
(
24
), pp.
2976
2981
(in Chinese).
12.
Chase
,
K. W.
, and
Parkinson
,
A. R.
,
1991
, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
,
3
(
1
), pp.
23
37
.
13.
Li
,
X. X.
,
Li
,
J. Q.
, and
Wen
,
X. N.
,
2003
, “
Computer Simulation of the Pitch Precision of Cranked Chains Based on Statistic
,”
China Mech. Eng.
,
14
(
3
), pp.
206
209
(in Chinese).
14.
Liu
,
Y. S.
,
Wu
,
Z. T.
,
Yang
,
J. X.
, and
Gao
,
S. M.
,
2001
, “
Mathematical Model of Size Tolerance for Plane Based on Mathematical Definition
,”
China J. Mech. Eng.
,
37
(
9
) pp.
12
17
(in Chinese).
15.
Wu
,
Z. T.
, and
Yang
,
J. X.
,
1999
,
Computer-Aided Tolerance Optimization Design
,
Zhejiang University Press
,
Zhejiang, China
(in Chinese).
16.
Beaucaire
,
P.
,
Gayton
,
N.
,
Duc
,
E.
,
Lemaire
,
M.
, and
Dantan
,
J. Y.
,
2012
, “
Statistical Tolerance Analysis of A Hyperstatic Mechanism, Using System Reliability Methods
,”
Comput. Ind. Eng.
,
63
(
4
), pp.
1118
1127
.
17.
Huang
,
Y. M.
, and
Shiau
,
C. S.
,
2009
, “
An Optimal Tolerance Allocation Model for Assemblies With Consideration of Manufacturing Cost, Quality Loss and Reliability Index
,”
Assembly Autom.
,
29
(
3
), pp.
220
229
.
18.
Yoon
,
S. J.
, and
Choi
,
D. H.
,
2004
, “
Reliability-Based Optimization of Slider Air Bearings
,”
KSME Int. J.
,
18
(
10
), pp.
1722
1729
.
19.
Zhang
,
Y. M.
,
Huang
,
X. Z.
,
Zhang
,
X. F.
,
He
,
X. D.
, and
Wen
,
B. C.
,
2009
, “
System Reliability Analysis for Kinematic Performance of Planar Mechanisms
,”
Chinese Sci. Bull.
,
54
(
14
), pp.
2464
2469
.
20.
Das
,
P. K.
, and
Zheng
,
Y.
,
2000
, “
Cumulative Formation of Response Surface and Its Use in Reliability Analysis
,”
Probab. Eng. Mech.
,
15
(
4
), pp.
309
315
.
21.
Zheng
,
Y.
, and
Das
,
P. K.
,
2000
, “
Improved Response Surface Method and Its Application to Stiffened Plate Reliability Analysis
,”
Eng. Struct.
,
22
(
5
), pp.
544
551
.
22.
Kim
,
C.
,
Wang
,
S.
, and
Choi
,
K. K.
,
2005
, “
Efficient Response Surface Modeling by Using Moving Least-Squares Method and Sensitivity
,”
AIAA J.
,
43
(
11
), pp.
2404
2411
.
23.
Kim
,
C.
,
Wang
,
S.
,
Hwang
,
I.
, and
Lee
,
J.
,
2007
, “
Application of Reliability-Based Topology Optimization for Microelectromechanical Systems
,”
AIAA J.
,
45
(
12
), pp.
2926
2934
.
24.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks are Universal Approximators
,”
Neural Networks
,
2
(
5
), pp.
359
366
.
25.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1990
, “
Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks
,”
Neural Networks
,
3
(
5
), pp.
551
560
.
26.
Chojaczyk
,
A. A.
,
Teixeira
,
A. P.
,
Neves
,
L. C.
,
Cardoso
,
J. B.
, and
Soares
,
C. G.
,
2015
, “
Review and Application of Artificial Neural Networks Models in Reliability Analysis of Steel Structures
,”
Struct. Saf.
,
52
(
Part A
), pp.
78
89
.
27.
Chatterjee
,
S.
, and
Bandopadhyay
,
S.
,
2012
, “
Reliability Estimation Using a Genetic Algorithm-Based Artificial Neural Network: An Application to A Load-Haul-Dump Machine
,”
Expert Syst. Appl.
,
39
(
12
), pp.
10943
10951
.
28.
Vapnik
,
V. N.
,
1999
, “
An Overview of Statistical Learning Theory
,”
IEEE Trans. Neural Networks
,
10
(
5
), pp.
988
998
.
29.
Vapnik
,
V. N.
,
2000
,
The Nature of Statistical Learning Theory
,
2nd ed.
,
Springer-Verlag
,
New York
.
30.
Rocco
,
C. M.
, and
Moreno
,
J. A.
,
2002
, “
Fast Monte Carlo Reliability Evaluation Using Support Vector Machine
,”
Reliab. Eng. Syst. Saf.
,
76
(
3
), pp.
237
243
.
31.
Hurtado
,
J. E.
, and
Alvarez
,
D. A.
,
2003
, “
Classification Approach for Reliability Analysis With Stochastic Finite-Element Modeling
,”
J. Struct. Eng.
,
129
(
8
), pp.
1141
1149
.
32.
Low
,
B. K.
, and
Tang
,
W. H.
,
2007
, “
Efficient Spreadsheet Algorithm for First-Order Reliability Method
,”
J. Eng. Mech.
,
113
(
12
), pp.
1378
1387
.
33.
Wu
,
Y. T.
, and
Wirsching
,
P. H.
,
1987
, “
New Algorithm for Structural Reliability Estimation
,”
J. Eng. Mech.
,
113
(
9
), pp.
1319
1336
.
34.
Ditlevsen
,
O.
,
2006
, “
SORM Applied to Hierarchical Parallel System
,”
Advances in Reliability and Optimization of Structural Systems-Proceedings of the 12th WG 7.5 Working Conference on Reliability and Optimization of Structural Systems
, Aalborg, Denmark, pp.
101
106
.
35.
Laribi
,
M. A.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2011
, “
Analysis and Optimal Synthesis of Single Loop Spatial Mechanisms
,”
J. ZheJiang Univ. Sci. A
,
12
(
9
), pp.
665
679
.
36.
Shiakolas
,
P. S.
,
Conrad
,
K. L.
, and
Yih
,
T. C.
,
2002
, “
On the Accuracy, Repeatability, and Degree of Influence of Kinematics Parameters for Industrial Robots
,”
Int. J. Model. Simul.
,
22
(
4
), pp.
245
254
.
37.
Rackwitz
,
R.
, and
Fiessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp.
489
494
.
38.
Ganji
,
A.
, and
Jowkarshorijeh
,
L.
,
2012
, “
Advance First Order Second Moment (AFOSM) Method for Single Reservoir Operation Reliability Analysis: A Case Study
,”
Stochastic Environ. Res. Risk Assess.
,
26
(
1
), pp.
33
42
.
39.
Cheng
,
B. Q.
,
1987
,
Aircraft Manufacturing Coordination Accuracy and Tolerance Allocation
,
National Defend Industry Press
,
Beijing, China
(in Chinese).
You do not currently have access to this content.