The augmented Lagrangian coordination (ALC), as an effective coordination method for decomposition-based optimization, offers significant flexibility by providing different variants when solving nonhierarchically decomposed problems. In this paper, these ALC variants are analyzed with respect to the number of levels and multipliers, and the resulting advantages and disadvantages are explored through numerical tests. The efficiency, accuracy, and parallelism of three ALC variants (distributed ALC, centralized ALC, and analytical target cascading (ATC) extended by ALC) are discussed and compared. Furthermore, the dual residual theory for the centralized ALC is extended to the distributed ALC, and a new flexible nonmonotone weight update is proposed and tested. Numerical tests show that the proposed update effectively improves the accuracy and robustness of the distributed ALC on a benchmark engineering test problem.

References

References
1.
Braun
,
R. D.
,
1996
, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” Doctoral dissertation, Stanford University, Stanford, CA.
2.
Braun
,
R. D.
,
Moore
,
A. A.
, and
Kroo
,
I. M.
,
1997
, “
Collaborative Approach to Launch Vehicle Design
,”
J. Spacecr. Rockets
,
34
(
4
), pp.
478
486
.
3.
Sobieszczanski-Sobieski
,
J.
,
1989
, “
Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems
,”
Second NASA Air Force Symposium on Advances in Multidisciplinary Analysis and Optimization
, Hampton, VA, Paper No. N89-25149.
4.
Sobieszczanski-sobieski
,
J.
,
Agte
,
J. S.
, and
Sandusky
,
R. R.
,
2000
, “
Bi-Level Integrated System Synthesis (BLISS)
,”
AIAA J.
,
38
(
1
), pp.
164
172
.
5.
Kim
,
H.
,
2001
, “
Target Cascading in Optimal System Design
,” Doctoral dissertation, University of Michigan, Ann Arbor, MI.
6.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
,
2003
, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
,
41
(
5
), pp.
897
905
.
7.
Kim
,
H. M.
,
Kokkolaras
,
M.
,
Louca
,
L. S.
,
Delagrammatikas
,
G. J.
,
Michelena
,
N. F.
,
Filipi
,
Z. S.
,
Papalambros
,
P. Y.
,
Stein
,
J. L.
, and
Assanis
,
D. N.
,
2002
, “
Target Cascading in Vehicle Redesign Class VI Truck Study
,”
Int. J. Veh. Des.
,
29
(
3
), pp.
199
225
.
8.
Lassiter
,
J. B.
,
Wiecek
,
M. M.
, and
Andrighetti
,
K. R.
,
2005
, “
Lagrangian Coordination and Analytical Target Cascading: Solving ATC-Decomposed Problems With Lagrangian Duality
,”
Optim. Eng.
,
6
(
3
), pp.
361
381
.
9.
Guarneri
,
P.
,
Leverenz
,
J. T.
,
Wiecek
,
M. M.
, and
Fadel
,
G.
,
2013
, “
Optimization of Nonhierarchically Decomposed Problems
,”
J. Comput. Appl. Math.
,
246
, pp.
312
319
.
10.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
,
2006
, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
176
189
.
11.
Wang
,
W.
,
2012
, “
Network Target Coordination for Design Optimization of Decomposed Systems
,” Doctoral dissertation, Clemson University, Clemson, SC.
12.
Wang
,
W.
,
Xu
,
M.
,
Guarneri
,
P.
,
Fadel
,
G.
, and
Blouin
,
V.
,
2012
, “
A Consensus Optimization Via Alternating Direction Method of Multipliers for Network Target Coordination
,”
12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Indianapolis, IN, Paper No. AIAA 2012-5552.
13.
Wang
,
W.
,
Guarneri
,
P.
,
Fadel
,
G.
, and
Blouin
,
V.
,
2012
, “
Network Target Coordination for Optimal Design of Decomposed Systems With Consensus Optimization
,”
ASME
Paper No. DETC2012-70333.
14.
Xu
,
M.
,
Wang
,
W.
,
Guarneri
,
P.
, and
Fadel
,
G.
,
2013
, “
CADMM Applied to Hybrid Network Decomposition
,”
Tenth World Congress on Structural and Multidisciplinary Optimization
, Orlando, FL, May 19–24, Paper No. 5455.
15.
Tosserams
,
S.
,
Kokkolaras
,
M.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2010
, “
A Nonhierarchical Formulation of Analytical Target Cascading
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051002
.
16.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2009
, “
Multi-Modality in Augmented Lagrangian Coordination for Distributed Optimal Design
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
329
352
.
17.
Blouin
, V
. Y.
,
Lassiter
,
J. B.
,
Wiecek
,
M. M.
, and
Fadel
,
M.
,
2005
, “
Augmented Lagrangian Coordination for Decomposed Design Problems
,”
Sixth World Congress on Structural and Multidisciplinary Optimization
, Rio de Janeiro, Brazil, May 30–June 3.
18.
Kim
,
H. M.
,
Chen
,
W.
, and
Wiecek
,
M. M.
,
2006
, “
Lagrangian Coordination for Enhancing The Convergence of Analytical Target Cascading
,”
AIAA J.
,
44
(
10
), pp.
2197
2207
.
19.
Bertsekas
,
D. P.
,
2003
,
Nonlinear Programming
,
2nd ed.
,
Athena Scientific
,
Belmont, MA
.
20.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2007
, “
An Augmented Lagrangian Decomposition Method for Quasi-Separable Problems in MDO
,”
Struct. Multidiscip. Optim.
,
34
(
3
), pp.
211
227
.
21.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2008
, “
Augmented Lagrangian Coordination for Distributed Optimal Design in MDO
,”
Int. J. Numer. Methods Eng.
,
73
(
13
), pp.
1885
1910
.
22.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2008
, “
Block-Separable Linking Constraints in Augmented Lagrangian Coordination
,”
Struct. Multidiscip. Optim.
,
37
(
5
), pp.
521
527
.
23.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2010
, “
A Micro-Accelerometer MDO Benchmark Problem
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
255
275
.
24.
Tosserams
,
S.
,
2008
, “
Distributed Optimization for Systems Design: An Augmented Lagrangian Coordination Method
,” Doctoral dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands.
25.
Xu
,
M.
,
Fadel
,
G.
, and
Wiecek
,
M. M.
,
2014
, “
Dual Residual in Augmented Lagrangian Coordination for Decomposition-Based Optimization
,”
ASME
Paper No. DETC2014-35103.
26.
Xu
,
M.
,
Fadel
,
G.
, and
Wiecek
,
M. M.
,
2015
, “
Dual Residual for Centralized Augmented Lagrangian Coordination Based on Optimality Conditions
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061401
.
27.
Xu
,
M.
,
Fadel
,
G.
, and
Wiecek
,
M. M.
,
2014
, “
Solving Structure for Network-Decomposed Problems Optimized With Augmented Lagrangian Coordination
,”
ASME
Paper No. DETC2014-35121.
28.
Xu
,
M.
,
Fadel
,
G.
, and
Wiecek
,
M. M.
,
2015
, “
Dual Residual for Distributed ALC Based on Optimality Conditions
,”
ASME
Paper No. DETC2015-47002.
You do not currently have access to this content.