In the last decades, grippers have been employed extensively at the microscale, for example, in microbiology and in microassembly. In these fields, specifically, it is essential to improve the performance of these systems in terms of precision, actuation, and sensing of the gripping force. Recent investigations drew attention on the tip–environment interaction force, which gave rise to further studies on the tip compliance behavior. This paper reveals a new method for designing MEMS technology-based compliant microgrippers with prescribed specifications for the jaw tip compliance. This approach relies on the equivalence between a compliant mechanism and its corresponding pseudorigid-body model (PRBM), the former embedding conjugate surfaces flexure hinges (CSFHs) as flexures. Such correspondence has been assessed by means of finite element analysis (FEA) simulations and theoretical models.

References

References
1.
McAllister
,
D. V.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
,
2000
, “
Microfabricated Microneedles for Gene and Drug Delivery
,”
Annu. Rev. Biomed. Eng.
,
2
(
1
), pp.
289
313
.
2.
Kimura
,
Y.
, and
Yanagimachi
,
R.
,
1995
, “
Intracytoplasmic Sperm Injection in the Mouse
,”
Biol. Reprod.
,
52
(
4
), pp.
709
720
.
3.
Garcés-Schröder
,
M.
,
Leester-Schädel
,
M.
,
Schulz
,
M.
,
Böl
,
M.
, and
Dietzel
,
A.
,
2015
, “
Micro-Gripper: A New Concept for a Monolithic Single-Cell Manipulation Device
,”
Sens. Actuators, A
,
236
, pp.
130
139
.
4.
Ingber
,
D. E.
,
2006
, “
Cellular Mechanotransduction: Putting All the Pieces Together Again
,”
FASEB J.
,
20
(
7
), pp.
811
827
.
5.
Moeendarbary
,
E.
, and
Harris
,
A. R.
,
2014
, “
Cell Mechanics: Principles, Practices, and Prospects
,”
Wiley Interdiscip. Rev.: Syst. Biol. Med.
,
6
(
5
), pp.
371
388
.
6.
Cecil
,
J.
,
Powell
,
D.
, and
Vasquez
,
D.
,
2007
, “
Assembly and Manipulation of Micro Devices—A State of the Art Survey
,”
Rob. Comput.-Integr. Manuf.
,
23
(
5
), pp.
580
588
.
7.
Carrozza
,
M. C.
,
Eisinberg
,
A.
,
Menciassi
,
A.
,
Campolo
,
D.
,
Micera
,
S.
, and
Dario
,
P.
,
2000
, “
Towards a Force-Controlled Microgripper for Assembling Biomedical Microdevices
,”
J. Micromech. Microeng.
,
10
(
2
), pp.
271
–276.
8.
Kim
,
D.-H.
,
Kim
,
B.
, and
Kang
,
H.
,
2004
, “
Development of a Piezoelectric Polymer-Based Sensorized Microgripper for Microassembly and Micromanipulation
,”
Microsyst. Technol.
,
10
(
4
), pp.
275
280
.
9.
Chronis
,
N.
, and
Lee
,
L.
,
2004
, “
Polymer MEMS-Based Microgripper for Single Cell Manipulation
,” 17th
IEEE
International Conference on Micro Electro Mechanical Systems
, pp.
17
20
.
10.
Sun
,
X.
,
Chen
,
W.
,
Fatikow
,
S.
,
Tian
,
Y.
,
Zhou
,
R.
,
Zhang
,
J.
, and
Mikczinski
,
M.
,
2015
, “
A Novel Piezo-Driven Microgripper With a Large Jaw Displacement
,”
Microsyst. Technol.
,
21
(
4
), pp.
931
942
.
11.
Hamedi
,
M.
,
Salimi
,
P.
, and
Vismeh
,
M.
,
2012
, “
Simulation and Experimental Investigation of a Novel Electrostatic Microgripper System
,”
Microelectron. Eng.
,
98
, Special issue MNE 2011 – Part II, pp.
467
471
.
12.
Wierzbicki
,
R.
,
Houston
,
K.
,
Heerlein
,
H.
,
Barth
,
W.
,
Debski
,
T.
,
Eisinberg
,
A.
,
Menciassi
,
A.
,
Carrozza
,
M.
, and
Dario
,
P.
,
2006
, “
Design and Fabrication of an Electrostatically Driven Microgripper for Blood Vessel Manipulation
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
1651
1654
.
13.
Zhang
,
Y.
,
Chen
,
B.
,
Liu
,
X.
, and
Sun
,
Y.
,
2010
, “
Autonomous Robotic Pick-and-Place of Microobjects
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
200
207
.
14.
Chen
,
T.
,
Sun
,
L.
,
Chen
,
L.
,
Rong
,
W.
, and
Li
,
X.
,
2010
, “
A Hybrid-Type Electrostatically Driven Microgripper With an Integrated Vacuum Tool
,”
Sens. Actuators, A
,
158
(
2
), pp.
320
327
.
15.
Yeh
,
J.
,
Jiang
,
S.-S.
, and
Lee
,
C.
,
2006
, “
MOEMS Variable Optical Attenuators Using Rotary Comb Drive Actuators
,”
IEEE Photonics Technol. Lett.
,
18
(
10
), pp.
1170
1172
.
16.
Cecchi
,
R.
,
Verotti
,
M.
,
Capata
,
R.
,
Dochshanov
,
A.
,
Broggiato
,
G.
,
Crescenzi
,
R.
,
Balucani
,
M.
,
Natali
,
S.
,
Razzano
,
G.
,
Lucchese
,
F.
,
Bagolini
,
A.
,
Bellutti
,
P.
,
Sciubba
,
E.
, and
Belfiore
,
N.
,
2015
, “
Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison
,”
Micromachines
,
6
(
11
), pp.
1710
1728
.
17.
Zeman
,
M. J. F.
,
Bordatchev
,
E. V.
, and
Knopf
,
G. K.
,
2006
, “
Design, Kinematic Modeling and Performance Testing of an Electro-Thermally Driven Microgripper for Micromanipulation Applications
,”
J. Micromech. Microeng.
,
16
(
8
), p.
1540
.
18.
Zhang
,
R.
,
Chu
,
J.
,
Wang
,
H.
, and
Chen
,
Z.
,
2013
, “
A Multipurpose Electrothermal Microgripper for Biological Micro-Manipulation
,”
Microsyst. Technol.
,
19
(
1
), pp.
89
97
.
19.
Chang
,
R.
,
Wang
,
H.
, and
Wang
,
Y.
,
2003
, “
Development of Mesoscopic Polymer Gripper System Guided by Precision Design Axioms
,”
Precis. Eng.
,
27
(
4
), pp.
362
369
.
20.
Kohl
,
M.
,
Just
,
E.
,
Pfleging
,
W.
, and
Miyazaki
,
S.
,
2000
, “
SMA Microgripper With Integrated Antagonism
,”
Sens. Actuators, A
,
83
(
1–3
), pp.
208
213
.
21.
Chen
,
T.
,
Chen
,
L.
,
Sun
,
L.
,
Wang
,
J.
, and
Li
,
X.
,
2008
, “
A Sidewall Piezoresistive Force Sensor Used in a MEMS Gripper
,”
International Conference on Intelligent Robotics and Applications Proceedings, Part II, ICIRA
, Wuhan, China, Oct. 15–17. pp.
207
216
.
22.
Zubir
,
M. N. M.
,
Shirinzadeh
,
B.
, and
Tian
,
Y.
,
2009
, “
Development of a Novel Flexure-Based Microgripper for High Precision Micro-Object Manipulation
,”
Sens. Actuators, A
,
150
(
2
), pp.
257
266
.
23.
Lan
,
C.-C.
,
Lin
,
C.-M.
, and
Fan
,
C.-H.
,
2011
, “
A Self-Sensing Microgripper Module With Wide Handling Ranges
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
141
150
.
24.
Shen
,
Y.
,
Winder
,
E.
,
Xi
,
N.
,
Pomeroy
,
C.
, and
Wejinya
,
U.
,
2006
, “
Closed-Loop Optimal Control-Enabled Piezoelectric Microforce Sensors
,”
IEEE/ASME Trans. Mechatronics
,
11
(
4
), pp.
420
427
.
25.
Lu
,
Z.
,
Chen
,
P.
,
Ganapathy
,
A.
,
Zhao
,
G.
,
Nam
,
J.
,
Yang
,
G.
,
Burdet
,
E.
,
Teo
,
C.
,
Meng
,
Q.
, and
Lin
,
W.
,
2006
, “
A Force-Feedback Control System for Micro-Assembly
,”
J. Micromech. Microeng.
,
16
(
9
), pp.
1861
1868
.
26.
Rakotondrabe
,
M.
,
Rabenorosoa
,
K.
,
Agnus
,
J.
, and
Chaillet
,
N.
,
2011
, “
Robust Feedforward-Feedback Control of a Nonlinear and Oscillating 2-DoF Piezocantilever
,”
IEEE Trans. Autom. Sci. Eng.
,
8
(
3
), pp.
506
519
.
27.
Estevez
,
P.
,
Bank
,
J.
,
Porta
,
M.
,
Wei
,
J.
,
Sarro
,
P.
,
Tichem
,
M.
, and
Staufer
,
U.
,
2012
, “
6 DOF Force and Torque Sensor for Micro-Manipulation Applications
,”
Sens. Actuators, A
,
186
, Selected Papers presented at Eurosensors XXV – Athens, Greece, Sept. 4–7, pp.
86
93
.
28.
Wei
,
J.
,
Porta
,
M.
,
Tichem
,
M.
, and
Sarro
,
P.
,
2009
, “
A Contact Position Detection and Interaction Force Monitoring Sensor for Micro-Assembly Applications
,”
International Solid-State Sensors, Actuators and Microsystems Conference
, TRANSDUCERS,
IEEE
, pp.
2385
2388
.
29.
Xu
,
Q.
,
2015
, “
Design, Fabrication, and Testing of an MEMS Microgripper With Dual-Axis Force Sensor
,”
IEEE Sens. J.
,
15
(
10
), pp.
6017
6026
.
30.
Kim
,
K.
,
Liu
,
X.
,
Zhang
,
Y.
, and
Sun
,
Y.
,
2008
, “
Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper With Two-Axis Force Feedback
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055013
.
31.
Rabenorosoa
,
K.
,
Clévy
,
C.
,
Chen
,
Q.
, and
Lutz
,
P.
,
2012
, “
Study of Forces During Microassembly Tasks Using Two-Sensing-Fingers Grippers
,”
IEEE/ASME Trans. Mechatronics
,
17
(
5
), pp.
811
821
.
32.
Verotti
,
M.
, and
Belfiore
,
N.
,
2016
, “
Isotropic Compliance in E(3): Feasibility and Workspace Mapping
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061005
.
33.
Verotti
,
M.
,
Masarati
,
P.
,
Morandini
,
M.
, and
Belfiore
,
N.
,
2016
, “
Isotropic Compliance in the Special Euclidean Group SE(3)
,”
Mech. Machine Theory
,
98
, pp.
263
281
.
34.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
, New York.
35.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
Wiley-Interscience
, New York.
36.
Lobontiu
,
N.
,
Garcia
,
E.
,
Goldfarb
,
M.
, and
Paine
,
J. S.
,
2001
, “
Corner-Filleted Flexure Hinges
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
346
352
.
37.
Yong
,
Y. K.
,
Lu
,
T.-F.
, and
Handley
,
D. C.
,
2008
, “
Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations
,”
Precis. Eng.
,
32
(
2
), pp.
63
70
.
38.
Verotti
,
M.
,
2016
, “
Analysis of the Center of Rotation in Primitive Flexures: Uniform Cantilever Beams With Constant Curvature
,”
Mech. Machine Theory
,
97
, pp.
29
50
.
39.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Su
,
H.
,
2009
, “
The Modeling of Cartwheel Flexural Hinges
,”
Mech. Machine Theory
,
44
(
10
), pp.
1900
1909
.
40.
Cannon
,
J.
, and
Howell
,
L.
,
2005
, “
A Compliant Contact-Aided Revolute Joint
,”
Mech. Machine Theory
,
40
(
11
), pp.
1273
1293
.
41.
Machekposhti
,
D. F.
,
Tolou
,
N.
, and
Herder
,
J.
,
2015
, “
A Review on Compliant Joints and Rigid-Body Constant Velocity Universal Joints Toward the Design of Compliant Homokinetic Couplings
,”
ASME J. Mech. Des.
,
137
(
3
), p.
032301
.
42.
Howell
,
L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
43.
Meng
,
Q.
,
Li
,
Y.
, and
Xu
,
J.
,
2014
, “
A Novel Analytical Model for Flexure-Based Proportion Compliant Mechanisms
,”
Precis. Eng.
,
38
(
3
), pp.
449
457
.
44.
Belfiore
,
N.
,
Broggiato
,
G.
,
Verotti
,
M.
,
Balucani
,
M.
,
Crescenzi
,
R.
,
Bagolini
,
A.
,
Bellutti
,
P.
, and
Boscardin
,
M.
,
2015
, “
Simulation and Construction of a MEMS CSFH Based Microgripper
,”
Int. J. Mech. Control
,
16
(
1
), pp.
21
30
.
45.
Verotti
,
M.
,
Crescenzi
,
R.
,
Balucani
,
M.
, and
Belfiore
,
N. P.
,
2015
, “
MEMS-Based Conjugate Surfaces Flexure Hinge
,”
ASME J. Mech. Des.
,
137
(
1
), p.
012301
.
46.
Laermer
,
F.
, and
Schilp
,
A.
,
1994
, “
Method for Anisotropically Etching Silicon
,” Patent Nos. DE4241045C1, EP0625285A1, EP0625285B1, US5501893, and WO1994014187A1.
47.
Tachi
,
S.
,
Tsujimoto
,
K.
, and
Okudaira
,
S.
,
1988
, “
Low-Temperature Reactive Ion Etching and Microwave Plasma Etching of Silicon
,”
Appl. Phys. Lett.
,
52
(
8
), pp.
616
618
.
48.
Parasuraman
,
J.
,
Summanwar
,
A.
,
Marty
,
F.
,
Basset
,
P.
,
Angelescu
,
D.
, and
Bourouina
,
T.
,
2014
, “
Deep Reactive Ion Etching of Sub-Micrometer Trenches With Ultra High Aspect Ratio
,”
Microelectron. Eng.
,
113
, pp.
35
39
.
49.
Marty
,
F.
,
Rousseau
,
L.
,
Saadany
,
B.
,
Mercier
,
B.
,
Français
,
O.
,
Mita
,
Y.
, and
Bourouina
,
T.
,
2005
, “
Advanced Etching of Silicon Based on Deep Reactive Ion Etching For Silicon High Aspect Ratio Microstructures and Three-Dimensional Micro- and Nanostructures
,”
Microelectron. J.
,
36
(
7
), pp.
673
677
.
50.
Owen
,
K. J.
,
VanDerElzen
,
B.
,
Peterson
,
R. L.
, and
Najafi
,
K.
,
2012
, “
High Aspect Ratio Deep Silicon Etching
,”
IEEE
25th International Conference on Micro Electro Mechanical Systems (MEMS)
, pp.
251
254
.
51.
Tillocher
,
T.
,
Kafrouni
,
W.
,
Ladroue
,
J.
,
Lefaucheux
,
P.
,
Boufnichel
,
M.
,
Ranson
,
P.
, and
Dussart
,
R.
,
2011
, “
Optimization of Submicron Deep Trench Profiles With the Stiger Cryoetching Process: Reduction of Defects
,”
J. Micromech. Microeng.
,
21
(
8
), p.
085005
.
52.
Belfiore
,
N.
,
Verotti
,
M.
,
Di Giamberardino
,
P.
, and
Rudas
,
I.
,
2012
, “
Active Joint Stiffness Regulation to Achieve Isotropic Compliance in the Euclidean Space
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041010
.
53.
Wang
,
D. H.
,
Yang
,
Q.
, and
Dong
,
H. M.
,
2013
, “
A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
138
147
.
54.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2016
, “
Realization of Point Planar Elastic Behaviors Using Revolute Joint Serial Mechanisms Having Specified Link Lengths
,”
Mech. Machine Theory
,
103
, pp.
1
20
.
55.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
, New York.
56.
Hopcroft
,
M. A.
,
Nix
,
W. D.
, and
Kenny
,
T. W.
,
2010
, “
What Is the Young's Modulus of Silicon?
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
229
238
.
57.
Petersen
,
K. E.
,
1982
, “
Silicon as a Mechanical Material
,”
Proc. IEEE
,
70
(
5
), pp.
420
457
.
You do not currently have access to this content.