The art and science of folding intricate three-dimensional structures out of paper has occupied artists, designers, engineers, and mathematicians for decades, culminating in the design of deployable structures and mechanical metamaterials. Here we investigate the axial compressibility of origami cylinders, i.e., cylindrical structures folded from rectangular sheets of paper. We prove, using geometric arguments, that a general fold pattern only allows for a finite number of isometric cylindrical embeddings. Therefore, compressibility of such structures requires either stretching the material or deforming the folds. Our result considerably restricts the space of constructions that must be searched when designing new types of origami-based rigid-foldable deployable structures and metamaterials.

References

References
1.
Yoshimura
,
Y.
,
1955
, “
On the Mechanism of Buckling of a Circular Cylindrical Shell Under Axial Compression
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No. 1390.
2.
Coppa
,
A. P.
,
1967
, “
Inextensional Buckling Configurations of Conical Shells
,”
AIAA J.
,
5
(
4
), pp.
750
754
.
3.
Lobkovsky
,
A.
, and
Witten
,
T. A.
,
1997
, “
Properties of Ridges in Elastic Membranes
,”
Phys. Rev. E
,
55
(
2
), pp.
1577
1589
.
4.
Witten
,
T. A.
,
2007
, “
Stress Focusing in Elastic Sheets
,”
Rev. Mod. Phys.
,
79
(
2
), pp.
643
675
.
5.
Ciarlet
,
P. G.
,
1993
,
Mathematical Elasticity: Three-Dimensional Elasticity
,
Elsevier
, Amsterdam, The Netherlands.
6.
Miura
,
K.
,
1980
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
31st Congress International Astronautical Federation
, pp.
1
10
.
7.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
8.
Silverberg
,
J. L.
,
Na
,
J.-H.
,
Evans
,
A. A.
,
Liu
,
B.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(4), pp.
389
393
.
9.
Zhang
,
X.
,
Cheng
,
G.
,
You
,
Z.
, and
Zhang
,
H.
,
2007
, “
Energy Absorption of Axially Compressed Thin-Walled Square Tubes With Patterns
,”
Thin-Walled Struct.
,
45
(
9
), pp.
737
746
.
10.
Song
,
J.
,
Chen
,
Y.
, and
Lu
,
G.
,
2012
, “
Axial Crushing of Thin-Walled Structures With Origami Patterns
,”
Thin-Walled Struct.
,
54
, pp.
65
71
.
11.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
12.
Abel
,
Z.
,
Connelly
,
R.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Hull
,
T. C.
,
Lubiw
,
A.
, and
Tachi
,
T.
,
2015
, “
Rigid Flattening of Polyhedra With Slits
,”
Origami6
, p.
109
.
13.
Balkcom
,
D. J.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Ochsendorf
,
J. A.
,
2009
, “
Folding Paper Shopping Bags
,”
Origami4
, Vol.
4
, R. Lang, ed., CRC Press, Boca Raton, FL.
14.
Wu
,
W.
, and
You
,
Z.
,
2011
, “
A Solution for Folding Rigid Tall Shopping Bags
,”
Proc. R. Soc. A
,
467
(
2133
), pp.
2561
2574
.
15.
Dudte
,
L. H.
,
Vouga
,
E.
,
Tachi
,
T.
, and
Mahadevan
,
L.
,
2016
, “
Programming Curvature Using Origami Tessellations
,”
Nat. Mater.
,
15
(
5
), pp.
583
588
.
16.
Saito
,
K.
,
Tsukahara
,
A.
, and
Okabe
,
Y.
,
2016
, “
Designing of Self-Deploying Origami Structures Using Geometrically Misaligned Crease Patterns
,”
Proc. R. Soc. A
,
472
(
2185
), pp.
1
16
.
17.
Kilian
,
M.
,
Flöry
,
S.
,
Chen
,
Z.
,
Mitra
,
N.
,
Sheffer
,
A.
, and
Pottmann
,
H.
,
2008
, “
Curved Folding
,”
ACM Trans. Graph.
,
27
(6), pp. 75:1–75:9.
18.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2016
, “
Origami Tubes With Reconfigurable Polygonal Cross-Sections
,”
Proc. R. Soc. A
,
472
(
2185
), p.
20150607
.
19.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders—Part II: The Folding Process
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
778
783
.
20.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
The Folding of Triangulated Cylinders—Part III: Experiments
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
77
83
.
21.
Yasuda
,
H.
,
Yein
,
T.
,
Tachi
,
T.
,
Miura
,
K.
, and
Taya
,
M.
,
2013
, “
Folding Behaviour of Tachi-Miura Polyhedron Bellows
,”
Proc. R. Soc. A
,
469
(2159), pp.
1
18
.
22.
Cauchy
,
A. L.
,
1813
, “
Recherche sur les polyèdres—premier mémoire
,”
J. Ec. Polytech.
,
9
, pp.
68
86
.
23.
Connelly
,
R.
,
1979
. “
The Rigidity of Polyhedral Surfaces
,”
Math. Mag.
,
52
(
5
), pp.
275
283
.
24.
Connelly
,
R.
,
Sabitov
,
I.
, and
Walz
,
A.
,
1997
, “
The Bellows Conjecture
,”
Beitr. Algebra Geom.
,
38
(
1
), pp.
1
10
.
25.
Huffman
,
D. A.
,
1976
. “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
.
26.
Belcastro
,
S.-M.
, and
Hull
,
T. C.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(1–3), pp.
273
282
.
27.
Streinu
,
I.
, and
Whiteley
,
W.
,
2004
, “
Single-Vertex Origami and Spherical Expansive Motions
,”
Discrete and Computational Geometry
,
Springer
,
Berlin
, pp.
161
173
.
28.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A
,
466
(
2119
), pp.
2155
2174
.
29.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders—Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
30.
Miura
,
K.
,
1969
, “
Proposition of Pseudo-Cylindrical Concave Polyhedral Shells
,”
ISAS Rep.
,
34
(
9
), pp.
141
163
.
31.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
Symposium of the International Association For Shell And Spatial Structures
, pp. 2287–2294.
32.
Wang
,
K.
, and
Chen
,
Y.
,
2011
, “
Folding a Patterned Cylinder by Rigid Origami
,” Origami5, P. Wang-Iverson, R. J. Lang, and M. Yim, eds., CRC Press, Boca Raton, FL.
33.
Tachi
,
T.
,
2009
, “
One-DOF Cylindrical Deployable Structures With Rigid Quadrilateral Panels
,”
IASS Symposium
, pp.
2295
2305
.
34.
Miura
,
K.
, and
Tachi
,
T.
,
2011
, “
Synthesis of Rigid-Foldable Cylindrical Polyhedra
,” pp.
1
10
.
35.
Massey
,
W. S.
,
1962
, “
Surfaces of Gaussian Curvature Zero in Euclidean 3-Space
,”
Tohoku Math. J., Second Ser.
,
14
(
1
), pp.
73
79
.
You do not currently have access to this content.