Mathematical models simulating the handling behavior of passenger cars are extensively used at a design stage for evaluating the effects of new structural solutions or control systems. The main source of uncertainty in these type of models lies in tire–road interaction, due to high nonlinearity. Proper estimation of tire model parameters is thus of utter importance to obtain reliable results. This paper presents a methodology aimed at identifying the magic formula-tire (MF-Tire) model coefficients of the tires of an axle only based on measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed, and steer angle) during standard handling maneuvers (step-steers, double lane changes, etc.). The proposed methodology is based on particle filtering (PF) technique. PF may become a serious alternative to classic model-based techniques, such as Kalman filters. Results of the identification procedure were first checked through simulations. Then, PF was applied to experimental data collected using an instrumented passenger car.

References

References
1.
Pacejka
,
H. B.
,
2002
,
Tyre and Vehicle Dynamics
,
Butterworth-Heinemann
,
Oxford, UK
.
2.
Pacejka
,
H. B.
, and
Bakker
,
E.
,
1992
, “
The Magic Formula Tyre Model
,”
Veh. Syst. Dyn.
,
21
(Supplement 1), pp.
1
18
.
3.
Braghin
,
F.
,
Cheli
,
F.
, and
Sabbioni
,
E.
,
2011
, “
Identification of Tyre Model Parameters Through Full Vehicle Experimental Tests
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
5
), pp.
1
11
.
4.
Braghin
,
F.
,
Cheli
,
F.
, and
Sabbioni
,
E.
,
2006
, “
Environmental Effects on Pacejka's Scaling Factors
,”
Veh. Syst. Dyn.
,
44
(
7
), pp.
547
568
.
5.
Arosio
,
D.
,
Braghin
,
F.
,
Cheli
,
F.
, and
Sabbioni
,
E.
,
2005
, “
Identification of Pacejka's Scaling Factors From Full-Scale Experimental Tests
,”
Veh. Syst. Dyn.
,
43
(Supplement 1), pp.
457
474
.
6.
Bolzern
,
P.
,
Cheli
,
F.
,
Falciola
,
G.
, and
Resta
,
F.
,
1999
, “
Estimation of the Non-Linear Suspension Tyre Cornering Forces From Experimental Road Test Data
,”
Veh. Syst. Dyn.
,
31
(1), pp.
23
34
.
7.
Best
,
M. C.
,
2010
, “
Identifying Tyre Models Directly From Vehicle Test Data Using an Extended Kalman Filter
,”
Veh. Syst. Dyn.
,
48
(
2
), pp.
171
187
.
8.
Best
,
M. C.
,
Gordon
,
T.
, and
Dixon
,
P. J.
,
2000
, “
An Extended Adaptive Kalman Filter for Real-Time State Estimation of Vehicle Handling Dynamics
,”
Veh. Syst. Dyn.
,
34
(
1
), pp.
57
75
.
9.
Cheng
,
C.
, and
Cebon
,
D.
,
2011
, “
Parameter and State Estimation for Articulated Heavy Vehicles
,” Veh. Syst. Dyn., 49(1–2), pp.
399
418
.
10.
Lin
,
F.
,
Zhao
,
Y.
, and
Xu
,
S.
,
2011
, “
Vehicle State Estimation Technology Based on Particle Filter Algorithm
,”
Trans. Chin. Soc. Agric. Mach.
,
42
(
2
), pp.
23
27
.
11.
Arulampalam
,
M. S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
,
2002
, “
A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking
,”
IEEE Trans, Signal Process.
,
50
(
2
), pp.
174
188
.
12.
Ristic
,
B.
,
Arulampalam
,
S.
, and
Gordon
,
N.
,
2004
,
Beyond the Kalman Filter
,
Artech House
,
Boston, MA
.
13.
Cappé
,
O.
,
Godsill
,
S. J.
, and
Moulines
,
E.
,
2007
, “
An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo
,”
IEEE Proc.
,
95
(
5
), pp.
899
924
.
14.
Robert
,
C.
, and
Casella
,
G.
,
1999
,
Monte Carlo Statistical Methods
,
Springer
,
New York
.
15.
Orchard
,
M. E.
, and
Vachtsevanos
,
G. J.
,
2009
, “
A Particle-Filtering Approach for On-Line Fault Diagnosis and Failure Prognosis
,”
Trans. Inst. Meas. Control
,
31
(3–4), pp.
221
246
.
16.
Hu
,
Y.
,
Baraldi
,
P.
,
Di Maio
,
F.
, and
Zio
,
E.
,
2015
, “
A Particle Filtering and Kernel Smoothing-Based Approach for New Design Component Prognostics
,”
Reliab. Eng. Syst. Safety
,
134
, pp.
19
31
.
17.
Rekleitis
,
I.
,
2002
, “
A Particle Filter Tutorial for Mobile Robot Localization
,” Centre of Intelligent Machines, McGill University, Technical Report, Report No. TRCIM04-02.
18.
Doucet
,
A.
,
1998
, “
On Sequential Simulation-Based Methods for Bayesian Filtering
,” Department of Engineering, University of Cambridge, UK, Technical Report No. CUED/F-INFENG/TR.310.
19.
van der Merwe
,
R.
,
Doucet
,
A.
,
de Freitas
,
J. F. G.
, and
Wan
,
E.
,
2000
, “
The Unscented Particle Filter
,”
IEEE Proceedings of Adaptive Systems for Signal Processing, Communication and Control
, Lake Louise, Alberta, Canada, pp. 584–590.
You do not currently have access to this content.