Research in market-based product design has often used compensatory preference models that assume an additive part-worth rule. These additive models have a simple, usable form and their parameters can be estimated using existing software packages. However, marketing research literature has demonstrated that consumers sometimes use noncompensatory-derived heuristics to simplify their choice decisions. This paper explores the quality of optimal solution obtained to a product line design search when using a compensatory model in the presence of noncompensatory choices and a noncompensatory model with conjunctive screening rules. Motivation for this work comes from the challenges posed by Bayesian-based noncompensatory models: the need for screening rule assumptions, probabilistic representations of noncompensatory choices, and discontinuous choice probability functions. This paper demonstrates how respondents making noncompensatory choices with conjunctive rules can lead to compensatory model estimations with distinct respondent segmentation and relative, large absolute part-worth values. Results from a product design problem suggest that using a compensatory model can provide benefits of smaller design errors and reduced computational costs. Product design optimization problems using real choice data confirm that the compensatory model and the noncompensatory model with conjunctive rules provide comparable solutions that have similar likelihoods of not being screened out when using a consideration set verifier. While many different noncompensatory heuristic rules exist, the presented study is limited to conjunctive screening rules.

References

References
1.
Michalek
,
J. J.
,
Ebbes
,
P.
,
Adigüzel
,
F.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2011
, “
Enhancing Marketing With Engineering: Optimal Product Line Design for Heterogeneous Markets
,”
Int. J. Res. Mark.
,
28
(
1
), pp.
1
12
.
2.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2005
, “
Linking Marketing and Engineering Product Design Decisions Via Analytical Target Cascading
,”
J. Prod. Innovation Manage.
,
22
(
1
), pp.
42
62
.
3.
Wassenaar
,
H. J.
, and
Chen
,
W.
,
2003
, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
490
497
.
4.
Tucker
,
C. S.
, and
Kim
,
H. M.
,
2009
, “
Data-Driven Decision Tree Classification for Product Portfolio Design Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
041004
.
5.
Desai
,
K. K.
, and
Hoyer
,
W. D.
,
2000
, “
Descriptive Characteristics of Memory-Based Consideration Sets: Influence of Usage Occasion Frequency and Usage Location Familiarity
,”
J. Consum. Res.
,
27
(
3
), pp.
309
323
.
6.
Ding
,
M.
,
2007
, “
An Incentive-Aligned Mechanism for Conjoint Analysis
,”
J. Mark. Res.
,
44
(
2
), pp.
214
223
.
7.
Erdem
,
T.
, and
Swait
,
J.
,
2004
, “
Brand Credibility, Brand Consideration, and Choice
,”
J. Consum. Res.
,
31
(
1
), pp.
191
198
.
8.
Gilbride
,
T. J.
, and
Allenby
,
G.
,
2006
, “
Estimating Heterogeneous EBA and Economic Screening Rule Choice Models
,”
Mark. Sci.
,
25
(
5
), pp.
494
509
.
9.
Morrow
,
W. R.
,
Long
,
M.
, and
MacDonald
,
E. F.
,
2014
, “
Market-System Design Optimization With Consider-Then-Choose Models
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031003
.
10.
Long
,
M.
, and
Morrow
,
W. R.
,
2015
, “
Should Optimal Designers Worry About Consideration?
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071410
.
11.
Green
,
P. E.
, and
Srinivasan
,
V.
,
1990
, “
Conjoint Analysis in Marketing: New Developments With Implications for Research and Practice
,”
J. Mark.
,
54
(
4
), pp.
3
19
.
12.
Train
,
K.
,
2009
,
Discrete Choice Methods With Simulation
,
Cambridge University Press
, New York.
13.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2013
,
Decision-Based Design
,
Springer
,
London
.
14.
Rossi
,
P. E.
,
Allenby
,
G. M.
, and
McCulloch
,
R. E.
,
2005
,
Bayesian Statistics and Marketing
,
Wiley
, Chichester, UK.
15.
Ben-Akiva
,
M. E.
, and
Lerman
,
S. R.
,
1985
,
Discrete Choice Analysis: Theory and Application to Travel Demand
,
MIT Press
, Cambridge, MA.
16.
Franses
,
P. H.
, and
Paap
,
R.
,
2001
,
Quantitative Models in Marketing Research
,
Cambridge University Press
, Cambridge, UK.
17.
Allenby
,
G. M.
, and
Rossi
,
P. E.
,
1998
, “
Marketing Models of Consumer Heterogeneity
,”
J. Econometrics
,
89
(
1–2
), pp.
57
78
.
18.
Lazarsfeld
,
P. F.
, and
Henry
,
N. W.
,
1968
,
Latent Structure Analysis
,
Houghton Mifflin
, New York.
19.
Magidson
,
J.
, and
Vermunt
,
J. K.
,
2004
, “
Latent Class Models
,”
The Sage Handbook of Quantitative Methodology for the Social Sciences
,
Sage Publications
, Thousand Oaks, CA, pp.
175
198
.
20.
Besharati
,
B.
,
Luo
,
L.
,
Azarm
,
S.
, and
Kannan
,
P. K.
,
2006
, “
Multi-Objective Single Product Robust Optimization: An Integrated Design and Marketing Approach
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
884
892
.
21.
Williams
,
N.
,
Azarm
,
S.
, and
Kannan
,
P. K.
,
2008
, “
Engineering Product Design Optimization for Retail Channel Acceptance
,”
ASME J. Mech. Des.
,
130
(
6
), p.
061402
.
22.
Turner
,
C.
,
Ferguson
,
S.
, and
Donndelinger
,
J.
,
2011
, “
Exploring Heterogeneity of Customer Preference to Balance Commonality and Market Coverage
,”
ASME
Paper No. DETC2011-48581.
23.
Sawtooth Software
,
2014
, “
Sawtooth Software CBC/HB 5.5.3
,” Sawtooth Software, Inc., Orem, UT.
24.
Wang
,
Z.
,
Kannan
,
P. K.
, and
Azarm
,
S.
,
2011
, “
Customer-Driven Optimal Design for Convergence Products
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101010
.
25.
Shiau
,
C.-S.
,
Tseng
,
I. H.
,
Heutchy
,
A. W.
, and
Michalek
,
J.
,
2007
, “
Design Optimization of a Laptop Computer Using Aggregate and Mixed Logit Demand Models With Consumer Survey Data
,”
ASME
Paper No. DETC2007-34883.
26.
Foster
,
G.
,
Turner
,
C.
,
Ferguson
,
S.
, and
Donndelinger
,
J.
,
2014
, “
Creating Targeted Initial Populations for Genetic Product Searches in Heterogeneous Markets
,”
Eng. Optim.
,
46
(
12
), pp.
1729
1747
.
27.
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
, and
Koppelman
,
F. S.
,
2010
, “
Integrated Bayesian Hierarchical Choice Modeling to Capture Heterogeneous Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121010
.
28.
Kang
,
N.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2015
, “
Integrated Decision Making in Electric Vehicle and Charging Station Location Network Design
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061402
.
29.
Hauser
,
J.
,
2009
, “
Non-Compensatory (and Compensatory) Models of Consideration-Set Decisions
,”
Sawtooth Conference
, Delray Beach, FL, Mar. 23–27, pp.
207
232
.
30.
Gilbride
,
T. J.
, and
Allenby
,
G. M.
,
2004
, “
A Choice Model With Conjunctive, Disjunctive, and Compensatory Screening Rules
,”
Mark. Sci.
,
23
(
3
), pp.
391
406
.
31.
Hauser
,
J. R.
,
2014
, “
Consideration-Set Heuristics
,”
J. Bus. Res.
,
67
(
8
), pp.
1688
1699
.
32.
Swait
,
J.
,
2001
, “
A Non-Compensatory Choice Model Incorporating Attribute Cutoffs
,”
Transp. Res. Part B: Methodol.
,
35
(
10
), pp.
903
928
.
33.
Arora
,
N.
,
Henderson
,
T.
, and
Liu
,
Q.
,
2011
, “
Noncompensatory Dyadic Choices
,”
Mark. Sci.
,
30
(
6
), pp.
1028
1047
.
34.
Jedidi
,
K.
, and
Kohli
,
R.
,
2005
, “
Probabilistic Subset-Conjunctive Models for Heterogeneous Consumers
,”
J. Mark. Res.
,
42
(
4
), pp.
483
494
.
35.
Yee
,
M.
,
Dahan
,
E.
,
Hauser
,
J. R.
, and
Orlin
,
J.
,
2007
, “
Greedoid-Based Noncompensatory Inference
,”
Mark. Sci.
,
26
(
4
), pp.
532
549
.
36.
Sawtooth Software
,
2011
, “
Sawtooth Software SSI Web 7.0
,” Sawtooth Software, Inc., Orem, UT.
37.
Orme
,
B. K.
,
2006
,
Getting Started With Conjoint Analysis: Strategies for Product Design and Pricing Research
,
Research Publishers, LLC
,
Madison, WI
.
38.
R Foundation for Statistical Computing
,
2015
, “
R: A Language and Environment for Statistical Computing (Ver. 3.2.3)
,” Institute for Statistics and Mathematics, Vienna, Austria.
39.
Sawtooth Software
,
2007
, “
Sawtooth Software Latent Class 4.0.8
,” Sawtooth Software, Inc., Orem, UT.
40.
Nylund
,
K. L.
,
Asparouhov
,
T.
, and
Muthén
,
B. O.
,
2007
, “
Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study
,”
Struct. Equation Model.: Multidiscip. J.
,
14
(
4
), pp.
535
569
.
41.
Gilbride
,
T. J.
, and
Lenk
,
P. J.
,
2010
, “
Posterior Predictive Model Checking: An Application to Multivariate Normal Heterogeneity
,”
J. Mark. Res.
,
47
(
5
), pp.
896
909
.
You do not currently have access to this content.