A systematic unit cell synthesis approach is presented for designing metamaterials from a unit cell level, which are made out of linearly elastic constitutive materials to achieve tunable nonlinear deformation characteristics. This method is expected to serve as an alternative to classical Topology Optimization methods (solid isotropic material with penalization or homogenization) in specific cases by carrying out unit cell synthesis and subsequent size optimization (SO). The unit cells are developed by synthesizing elemental components with simple geometries that display geometric nonlinearity under deformation. The idea is to replace the physical nonlinear behavior of the target material by adding geometric nonlinearities associated with the deforming entities and thus, achieve large overall deformations with small linear strains in each deformed entity. A case study is presented, which uses the proposed method to design a metamaterial that mimics the nonlinear deformation behavior of a military tank track rubber pad under compression. Two unit cell concepts that successfully match the nonlinear target rubber compression curve are evaluated. Conclusions and scope for future work to develop the method are discussed.

References

References
1.
Walser
,
R. M.
,
2001
, “
Electromagnetic Metamaterials
,”
Proc. SPIE
,
4467
, pp. 1–15.
2.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
,
1997
, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson's Ratio
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
99
106
.
3.
Galgalikar
,
R.
,
2012
, “
Design Automation and Optimization of Honeycomb Structures for Maximum Sound Transmission Loss
,”
Master's thesis
, Clemson University, Clemson, SC.
4.
Guest
,
J. K.
, and
Prévost
,
J. H.
,
2007
, “
Design of Maximum Permeability Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
4–6
), pp.
1006
1017
.
5.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
,
45
(
6
), pp.
1037
1067
.
6.
Sigmund
,
O.
,
Torquato
,
S.
, and
Aksay
,
I. A.
,
1998
, “
On the Design of 1-3 Piezocomposites Using Topology Optimization
,”
J. Mater. Res.
,
13
(
4
), pp.
1038
1048
.
7.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
8.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization: Theory, Methods, and Applications
, Springer, Berlin.
9.
Gibiansky
,
L. V.
, and
Sigmund
,
O.
,
2000
, “
Multiphase Composites With Extremal Bulk Modulus
,”
J. Mech. Phys. Solids
,
48
(
3
), pp.
461
498
.
10.
Czech
,
C.
,
Guarneri
,
P.
, and
Fadel
,
G.
,
2012
, “
Meta-Material Design of the Shear Layer of a Non-Pneumatic Wheel Using Topology Optimization
,”
ASME
Paper No. DETC2012-71340.
11.
Berglind
,
L. A.
, and
Summers
,
J. D.
,
2014
, “
Direct Displacement Synthesis Method for Shape Morphing Skins Using Compliant Mechanisms
,”
ASME
Paper No. DETC2010-28546.
12.
Fazelpour
,
M.
, and
Summers
,
J. D.
,
2013
, “
A Comparison of Design Approaches to Meso-Structure Development
,”
ASME
Paper No. DETC2013-12295.
13.
Yoder
,
M.
,
Satterfield
,
Z.
,
Fazelpour
,
M.
,
Summers
,
J. D.
, and
Fadel
,
G.
,
2015
, “
Numerical Methods for the Design of Meso-Structures: A Comparative Review
,”
ASME
Paper No. DETC2015-46289.
14.
Wang
,
F.
,
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2014
, “
Design of Materials With Prescribed Nonlinear Properties
,”
J. Mech. Phys. Solids
,
69
(
1
), pp.
156
174
.
15.
Sigmund
,
O.
,
1994
, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids Struct.
,
31
(
17
), pp.
2313
2329
.
16.
Sigmund
,
O.
,
1995
, “
Tailoring Materials With Prescribed Elastic Properties
,”
Mech. Mater.
,
20
(
4
), pp.
351
368
.
17.
Cheng
,
G. D.
, and
Guo
,
X.
,
1997
, “
ε-Relaxed Approach in Structural Topology Optimization
,”
Struct. Optim.
,
13
(
4
), pp.
258
266
.
18.
Bruggi
,
M.
, and
Venini
,
P.
,
2008
, “
A Mixed FEM Approach to Stress-Constrained Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
73
(
12
), pp.
1693
1714
.
19.
Le
,
C.
,
Norato
,
J.
,
Bruns
,
T.
,
Ha
,
C.
, and
Tortorelli
,
D.
,
2010
, “
Stress-Based Topology Optimization for Continua
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
605
620
.
20.
Holmberg
,
E.
,
Torstenfelt
,
B.
, and
Klarbring
,
A.
,
2013
, “
Stress Constrained Topology Optimization
,”
Struct. Multidiscip. Optim.
,
48
(
1
), pp.
33
47
.
21.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization I—Homogenization Theory for Media With Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
.
22.
Czech
,
C.
,
2012
, “
Design of Meta-Materials Outside the Homogenization Limit Using Multiscale Analysis and Topology Optimization
,”
Ph.D. dissertation
, Clemson University, Clemson, SC.
23.
Czech
,
C.
,
Guarneri
,
P.
,
Thyagaraja
,
N.
, and
Fadel
,
G.
,
2015
, “
Systematic Design Optimization of the Metamaterial Shear Beam of a Nonpneumatic Wheel for Low Rolling Resistance
,”
ASME J. Mech. Des.
,
137
(
4
), p. 041404.
24.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Homogenization and Equivalent In-Plane Properties of Two-Dimensional Periodic Lattices
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
2897
2915
.
25.
Diaz
,
A. R.
, and
Bénard
,
A.
,
2003
, “
Designing Materials With Prescribed Elastic Properties Using Polygonal Cells
,”
Int. J. Numer. Methods Eng.
,
57
(
3
), pp.
301
314
.
26.
Lipperman
,
F.
,
Fuchs
,
M. B.
, and
Ryvkin
,
M.
,
2008
, “
Stress Localization and Strength Optimization of Frame Material With Periodic Microstructure
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
45–48
), pp.
4016
4026
.
27.
Wang
,
H. V.
,
2005
, “
A Unit Cell Approach for Lightweight Structure and Compliant Mechanism
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.
28.
Joo
,
J.
, and
Kota
,
S.
,
2004
, “
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
,
32
(1), pp. 17–38.
29.
Dangeti
,
V. S.
,
2014
, “
Identifying Target Properties for the Design of Meta-Material Tank Track Pads
,” Igarss,
Master's thesis
, Clemson University, Clemson, SC.
30.
Lundstedt
,
T.
,
Seifert
,
E.
,
Abramo
,
L.
,
Thelin
,
B.
,
Nyström
,
Å.
,
Pettersen
,
J.
, and
Bergman
,
R.
,
1998
, “
Experimental Design and Optimization
,”
Chemom. Intell. Lab. Syst.
,
42
(1–2), pp. 3–40.
31.
Merriam
,
E. G.
,
Jones
,
J. E.
, and
Howell
,
L. L.
,
2014
, “
Design of 3D-Printed Titanium Compliant Mechanisms
,”
42nd Aerospace Mechanisms Symposium
, Greenbelt, MD, May 14–16, pp. 169–174.
You do not currently have access to this content.