Product family (PF) design is a widely used strategy in the industry, as it allows meeting diverse design requirements. Change propagation in any PF is difficult to predict. Consequently, while numerous design change management methodologies presently exist, their application is restricted to a single artifact. This issue is overcome in the present study. The proposed framework explores effective change propagation paths (CPPs) by considering the risks associated with design changes in the PF with the aim of minimizing the overall redesign cost. The propagated risk, which would result in rework, is quantified in terms of change impact and propagation likelihood. Moreover, a design structure matrix (DSM) based mathematical model and an algorithm for its implementation are proposed to investigate the change propagation across the PF. Finally, to demonstrate their effectiveness, a PF of electric kettles is examined in a case study. The study findings confirm that the proposed technique is appropriate for evaluating different CPPs in PF.

References

References
1.
Simpson
,
T. W.
,
2004
, “
Product Platform Design and Customization: Status and Promise
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
18
(
1
), pp.
3
20
.
2.
Ahmad
,
N.
,
Wynn
,
D. C.
, and
Clarkson
,
P. J.
,
2013
, “
Change Impact on a Product and Its Redesign Process: A Tool for Knowledge Capture and Reuse
,”
Res. Eng. Des.
,
24
(
3
), pp.
219
244
.
3.
Hamraz
,
B.
, and
Clarkson
,
P. J.
,
2015
, “
Industrial Evaluation of FBS Linkage: A Method to Support Engineering Change Management
,”
J. Eng. Des.
,
26
(
1–3
), pp.
24
47
.
4.
Koh
,
E. C. Y.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2012
, “
A Method to Assess the Effects of Engineering Change Propagation
,”
Res. Eng. Des.
,
23
(
4
), pp.
329
351
.
5.
Hamraz
,
B.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2012
, “
A Multidomain Engineering Change Propagation Model to Support Uncertainty Reduction and Risk Management in Design
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100905
.
6.
Ollinger
,
G. A.
, and
Stahovich
,
T. F.
,
2004
, “
RedesignIT—A Model-Based Tool for Managing Design Changes
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
208
216
.
7.
Cohen
,
T.
,
Navathe
,
S. B.
, and
Fulton
,
R. E.
,
2000
, “
C-FAR, Change Favorable Representation
,”
Comput. Aided Des.
,
32
(
5–6
), pp.
321
338
.
8.
Khajavirad
,
A.
,
Michalek
,
J. J.
, and
Simpson
,
T. W.
,
2009
, “
An Efficient Decomposed Multiobjective Genetic Algorithm for Solving the Joint Product Platform Selection and Product Family Design Problem With Generalized Commonality
,”
Struct. Multidiscip. Optim.
,
39
(
2
), pp.
187
201
.
9.
McGrath
,
M. E.
,
1995
,
Product Strategy for High-Technology Companies
,
Irwin Professional Publishing
,
New York
.
10.
Jiao
,
J.
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.
11.
Berry
,
S.
, and
Pakes
,
A.
,
2007
, “
The Pure Characteristics Demand Model
,”
Int. Econ. Rev.
,
48
(
4
), pp.
1193
1225
.
12.
Wortmann
,
J. C.
,
Muntslag
,
D. R.
, and
Timmermans
,
P. J. M.
,
1997
,
Customer-Driven Manufacturing
,
Springer/Chapman & Hall, Dordrecht
,
The Netherlands/London
.
13.
Tseng
,
M. M.
,
Jiao
,
J.
, and
Merchant
,
M. E.
,
1996
, “
Design for Mass Customization
,”
CIRP Ann. Manuf. Technol.
,
45
(
1
), pp.
153
156
.
14.
Meyer
,
M. H.
, and
Lehnerd
,
A. P.
,
1997
,
The Power of Product Platforms: Building Value and Cost Leadership
,
Free Press
,
New York
.
15.
Lee
,
H.
,
Seol
,
H.
,
Sung
,
N.
,
Hong
,
Y. S.
, and
Park
,
Y.
,
2010
, “
An Analytic Network Process Approach to Measuring Design Change Impacts in Modular Products
,”
J. Eng. Des.
,
21
(
1
), pp.
75
91
.
16.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
.
17.
Shankar
,
P.
,
Morkos
,
B.
, and
Summers
,
J. D.
,
2012
, “
Reasons for Change Propagation: A Case Study in an Automotive OEM
,”
Res. Eng. Des.
,
23
(
4
), pp.
291
303
.
18.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
.
19.
Keller
,
R.
,
Eckert
,
C. M.
, and
Clarkson
,
P. J.
,
2009
, “
Using an Engineering Change Methodology to Support Conceptual Design
,”
J. Eng. Des.
,
20
(
6
), pp.
571
587
.
20.
Wynn
,
D. C.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2014
, “
Predicting Change Propagation in Complex Design Workflows
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081009
.
21.
Yang
,
F.
, and
Duan
,
G.-J.
,
2012
, “
Developing a Parameter Linkage-Based Method for Searching Change Propagation Paths
,”
Res. Eng. Des.
,
23
(
4
), pp.
353
372
.
22.
Ripperda
,
S.
, and
Krause
,
D.
,
2017
, “
Cost Effects of Modular Product Family Structures: Methods and Quantification of Impacts to Support Decision Making
,”
ASME J. Mech. Des.
,
139
(
2
), p.
021103
.
23.
Eichstetter
,
M.
,
Muller
,
S.
, and
Zimmermann
,
M.
,
2016
, “
Product Family Design With Solution Spaces
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121401
.
24.
Kota
,
S.
,
Sethuraman
,
K.
, and
Miller
,
R.
,
2000
, “
A Metric for Evaluating Design Commonality in Product Families
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
403
410
.
25.
Kocar
,
V.
, and
Akgunduz
,
A.
,
2010
, “
ADVICE: A Virtual Environment for Engineering Change Management
,”
Comput. Ind.
,
61
(
1
), pp.
15
28
.
26.
Raffaeli
,
R.
,
Malatesta
,
M.
,
Marilungo
,
E.
, and
Germani
,
M.
,
2013
, “
An Approach for Managing Engineering Changes in Product Families
,”
ASME
Paper No. DETC2013-12562.
27.
Van Bossuyt
,
D. L.
,
Dong
,
A.
,
Tumer
,
I. Y.
, and
Carvalho
,
L.
,
2013
, “
On Measuring Engineering Risk Attitudes 1
,”
ASME J. Mech. Des.
,
135
(
12
), p.
121001
.
28.
Zhang
,
J.
,
Song
,
X.
,
Chen
,
H.
, and
Shi
,
R.
,
2015
, “
Optimisation of Critical Chain Sequencing Based on Activities' Information Flow Interactions
,”
Int. J. Prod. Res.
,
53
(
20
), pp.
6231
6241
.
29.
Hollins
,
B.
, and
Pugh
,
S.
,
1990
,
Successful Product Design
,
Butterworths
,
London
.
30.
Maier
,
J. F.
,
Wynn
,
D. C.
,
Biedermann
,
W.
,
Lindemann
,
U.
, and
Clarkson
,
P. J.
,
2014
, “
Simulating Progressive Iteration, Rework and Change Propagation to Prioritise Design Tasks
,”
Res. Eng. Des.
,
25
(
4
), pp.
283
307
.
31.
Andersson
,
J.
,
Pohl
,
J.
, and
Eppinger
,
S. D.
,
1998
, “
A Design Process Modeling Approach Incorporating Nonlinear Elements
,”
ASME
Paper No. DETC98-5663.
32.
Li
,
Y.
,
Zhao
,
W.
, and
Ma
,
Y.
,
2016
, “
A Shortest Path Method for Sequential Change Propagations in Complex Engineering Design Processes
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
30
(
1
), pp.
107
121
.
33.
Pasqual
,
M. C.
, and
de Weck
,
O. L.
,
2012
, “
Multilayer Network Model for Analysis and Management of Change Propagation
,”
Res. Eng. Des.
,
23
(
4
), pp.
305
328
.
34.
Koh
,
E. C. Y.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2013
, “
A Technique to Assess the Changeability of Complex Engineering Systems
,”
J. Eng. Des.
,
24
(
7
), pp.
477
498
.
35.
ElMaraghy
,
H.
, and
AlGeddawy
,
T.
,
2014
, “
Multidisciplinary Domains Association in Product Family Design
,”
Advances in Product Family and Product Platform Design: Methods and Applications
.
T. W.
Simpson
,
J.
Jiao
,
Z.
Siddique
, and
K.
Hölttä-Otto
, eds.,
Springer
,
New York
, pp.
71
89
.
36.
Jarratt
,
T. A. W.
,
Eckert
,
C. M.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2011
, “
Engineering Change: An Overview and Perspective on the Literature
,”
Res. Eng. Des.
,
22
(
2
), pp.
103
124
.
You do not currently have access to this content.