Engineers and technology firms must continually explore new design opportunities and directions to sustain or thrive in technology competition. However, the related decisions are normally based on personal gut feeling or experiences. Although the analysis of user preferences and market trends may shed light on some design opportunities from a demand perspective, design opportunities are always conditioned or enabled by the technological capabilities of designers. Herein, we present a data-driven methodology for designers to analyze and identify what technologies they can design for the next, based on the principle—what a designer can currently design condition or enable what it can design next. The methodology is centered on an empirically built network map of all known technologies, whose distances are quantified using more than 5 million patent records, and various network analytics to position a designer according to the technologies that they can design, navigate technologies in the neighborhood, and identify feasible paths to far fields for novel opportunities. Furthermore, we have integrated the technology space map, and various map-based functions for designer positioning, neighborhood search, path finding, and knowledge discovery and learning, into a data-driven visual analytic system named InnoGPS. InnoGPS is a global position system (GPS) for finding innovation positions and directions in the technology space, and conceived by analogy from the GPS that we use for positioning, neighborhood search, and direction finding in the physical space.

References

1.
Reid
,
T. N.
,
Frischknecht
,
B. D.
, and
Papalambros
,
P. Y.
,
2012
, “
Perceptual Attributes in Product Design: Fuel Economy and Silhouette-Based Perceived Environmental Friendliness Tradeoffs in Automotive Vehicle Design
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041006
.
2.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2012
,
Decision-Based Design: Integrating Consumer Preferences Into Engineering Design
,
Springer Science & Business Media
, London.
3.
Wang
,
M.
,
Chen
,
W.
,
Huang
,
Y.
,
Contractor
,
N. S.
, and
Fu
,
Y.
, 2016, “
Modeling Customer Preferences Using Multidimensional Network Analysis in Engineering Design
,”
Des. Sci.
,
2
, p. e11.
4.
Burnap
,
A.
,
Pan
,
Y.
,
Liu
,
Y.
,
Ren
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Improving Design Preference Prediction Accuracy Using Feature Learning
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071404
.
5.
Kang
,
N.
,
Ren
,
Y.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
, 2016, “
Public Investment and Electric Vehicle Design: A Model-Based Market Analysis Framework With Application to a USA–China Comparison Study
,”
Des. Sci.
,
2
, p. e6.
6.
Ma
,
J.
, and
Kim
,
H. M.
,
2014
, “
Continuous Preference Trend Mining for Optimal Product Design With Multiple Profit Cycles
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061002
.
7.
Jin
,
J.
,
Ji
,
P.
, and
Liu
,
Y.
,
2014
, “
Prioritising Engineering Characteristics Based on Customer Online Reviews for Quality Function Deployment
,”
J. Eng. Des.
,
25
(
7–9
), pp.
303
324
.
8.
Weisberg
,
R. W.
,
2006
,
Creativity: Understanding Innovation in Problem Solving, Science, Invention, and the Arts
,
Wiley
,
Hoboken, NJ
.
9.
Arthur
,
W. B.
,
2009
,
The Nature of Technology: What It Is and How It Evolves
,
Simon and Schuster
,
New York
.
10.
Hatchuel
,
A.
, and
Weil
,
B.
,
2009
, “
CK Design Theory: An Advanced Formulation
,”
Res. Eng. Des.
,
19
(
4
), pp.
181
192
.
11.
Tang
,
V.
, and
Luo
,
J.
,
2013
, “
Idea Matrix and Creativity Operators
,”
DS 75-7: 19th International Conference on Engineering Design (ICED), Design for Harmonies
, Seoul, South Korea, Aug. 19–22, pp. 301–316.
12.
Alstott
,
J.
,
Triulzi
,
G.
,
Yan
,
B.
, and
Luo
,
J.
,
2017
, “
Mapping Technology Space by Normalizing Patent Networks
,”
Scientometrics
,
110
(
1
), pp.
443
479
.
13.
Fleming
,
L.
, and
Sorenson
,
O.
,
2004
, “
Science as a Map in Technological Search
,”
Strategic Manage. J.
,
25
(
8–9
), pp.
909
928
.
14.
Hatchuel
,
A.
, and
Weil
,
B.
,
2003
, “
A New Approach of Innovative Design: An Introduction to CK Theory
,”
DS 31: The 14th International Conference on Engineering Design
, ICED, Stockholm, Sweden, Aug. 19–21, Paper No.
DS31_1794FPC
.
15.
Hatchuel
,
A.
,
Le Masson
,
P.
, and
Weil
,
B.
,
2004
, “
C-K Theory in Practice: Lessons From Industrial Applications
,”
DS 32: The Eighth International Design Conference, DESIGN
, Dubrovnik, Croatia, May 18–21, pp. 245–258.
16.
Luo
,
J.
, 2015, “
The United Innovation Process: Integrating Science, Design, and Entrepreneurship as Sub-Processes
,”
Des. Sci.
,
1
, p. e2.
17.
De Groot
,
A. D.
,
1965
,
Thoughtand Choice in Chess
,
Mouton
,
The Hague, The Netherlands
.
18.
Chase
,
W. G.
, and
Simon
,
H. A.
,
1973
, “
Perception in Chess
,”
Cognit. Psychol.
,
4
(
1
), pp.
55
81
.
19.
Chi
,
M. T.
,
Feltovich
,
P. J.
, and
Glaser
,
R.
,
1981
, “
Categorization and Representation of Physics Problems by Experts and Novices
,”
Cognit. Sci.
,
5
(
2
), pp.
121
152
.
20.
Ericsson
,
K. A.
,
1999
, “
Creative Expertise as Superior Reproducible Performance: Innovative and Flexible Aspects of Expert Performance
,”
Psychol. Inquiry
,
10
(
4
), pp.
329
333
.
21.
Linsey
,
J. S.
,
2007
, “
Design-by-Analogy and Representation in Innovative Engineering Concept Generation
,”
Ph.D. thesis
, The University of Texas at Austin, Austin, TX.
22.
Linsey
,
J.
,
Markman
,
A.
, and
Wood
,
K.
,
2012
, “
Design by Analogy: A Study of the WordTree Method for Problem Re-Representation
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041009
.
23.
Fleming
,
L.
, and
Sorenson
,
O.
,
2001
, “
Technology as a Complex Adaptive System: Evidence From Patent Data
,”
Res. Policy
,
30
(
7
), pp.
1019
1039
.
24.
Uzzi
,
B.
,
Mukherjee
,
S.
,
Stringer
,
M.
, and
Jones
,
B.
,
2013
, “
Atypical Combinations and Scientific Impact
,”
Science
,
342
(
6157
), pp.
468
472
.
25.
He
,
Y.
, and
Luo
,
J.
,
2017
, “
Novelty, Conventionality, and Value of Invention
,”
Design Computing and Cognition
(
DCC
), Evanston, IL, June 27–29, pp.
23
38
.
26.
Yan
,
B.
, and
Luo
,
J.
,
2017
, “
Measuring Technological Distance for Patent Mapping
,”
J. Assoc. Inf. Sci. Technol.
,
68
(
2
), pp.
423
437
.
27.
Shai
,
O.
, and
Reich
,
Y.
,
2004
, “
Infused Design. I. Theory
,”
Res. Eng. Des.
,
15
(
2
), pp.
93
107
.
28.
Reich
,
Y.
, and
Shai
,
O.
,
2012
, “
The Interdisciplinary Engineering Knowledge Genome
,”
Res. Eng. Des.
,
23
(
3
), pp.
251
264
.
29.
Altshuller
,
H.
,
1994
,
The Art of Inventing (and Suddenly the Inventor Appeared)
,
Technical Innovation Center
,
Worcester, MA
.
30.
Szykman
,
S.
,
Sriram
,
R. D.
,
Bochenek
,
C.
,
Racz
,
J. W.
, and
Senfaute
,
J.
,
2000
, “
Design Repositories: Engineering Design's New Knowledge Base
,”
IEEE Intell. Syst. Their Appl.
,
15
(
3
), pp.
48
55
.
31.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2008
, “
Using a Design Repository to Drive Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
014502
.
32.
Chakrabarti
,
A. K.
,
Dror
,
I.
, and
Eakabuse
,
N.
,
1991
, “
Interorganizational Transfer of Knowledge: An Analysis of Patent Citations of a Defense Firm
,”
Technology Management: The New International Language
, Portland, OR, Oct. 27–31, pp.
510
515
.
33.
Indukuri
,
K. V.
,
Ambekar
,
A. A.
, and
Sureka
,
A.
,
2007
, “
Similarity Analysis of Patent Claims Using Natural Language Processing Techniques
,”
International Conference on Computational Intelligence and Multimedia Applications
(
ICCIMA
), Sivakasi, Tamil Nadu, Dec. 13–15, pp.
169
175
.
34.
Kasravi
,
K.
, and
Risov
,
M.
,
2007
, “
Patent Mining-Discovery of Business Value From Patent Repositories
,”
40th Annual Hawaii International Conference on System Sciences
(
HICSS
), Big Island, Hawaii, Jan. 3–6, pp. 1–10.
35.
Moehrle
,
M.
, and
Geritz
,
A.
,
2004
, “
Developing Acquisition Strategies Based on Patent Maps
,” 13th International Conference on Management of Technology (
IAMOT
), Washington, DC, May 13–15 and Apr. 3–7, pp. 19–29.
36.
Zhang
,
L.
,
Li
,
L.
, and
Li
,
T.
,
2015
, “
Patent Mining: A Survey
,”
ACM SIGKDD Explor. Newsl.
,
16
(
2
), pp.
1
19
.
37.
Bonino
,
D.
,
Ciaramella
,
A.
, and
Corno
,
F.
,
2010
, “
Review of the State-of-the-Art in Patent Information and Forthcoming Evolutions in Intelligent Patent Informatics
,”
World Pat. Inf.
,
32
(
1
), pp.
30
38
.
38.
Cascini
,
G.
, and
Russo
,
D.
,
2007
, “
Computer-Aided Analysis of Patents and Search for TRIZ Contradictions
,”
Int. J. Prod. Dev.
,
4
(
1–2
), pp.
52
67
.
39.
Zhang
,
R.
,
Cha
,
J.
, and
Lu
,
Y.
,
2007
, “
A Conceptual Design Model Using Axiomatic Design, Functional Basis and TRIZ
,”
IEEE International Conference on Industrial Engineering and Engineering Management
(
IEEM
), Singapore, Dec. 2–4, pp.
1807
1810
.
40.
Li
,
Z.
,
Tate
,
D.
,
Lane
,
C.
, and
Adams
,
C.
,
2012
, “
A Framework for Automatic TRIZ Level of Invention Estimation of Patents Using Natural Language Processing, Knowledge-Transfer and Patent Citation Metrics
,”
Comput.-Aided Des.
,
44
(
10
), pp.
987
1010
.
41.
Fantoni
,
G.
,
Apreda
,
R.
,
Dell'Orletta
,
F.
, and
Monge
,
M.
,
2013
, “
Automatic Extraction of Function–Behaviour–State Information From Patents
,”
Adv. Eng. Inf.
,
27
(
3
), pp.
317
334
.
42.
Souili
,
A.
,
Cavallucci
,
D.
,
Rousselot
,
F.
, and
Zanni
,
C.
,
2015
, “
Starting From Patents to Find Inputs to the Problem Graph Model of IDM-TRIZ
,”
Procedia Eng.
,
131
, pp.
150
161
.
43.
Mukherjea
,
S.
,
Bamba
,
B.
, and
Kankar
,
P.
,
2005
, “
Information Retrieval and Knowledge Discovery Utilizing a Biomedical Patent Semantic Web
,”
IEEE Trans. Knowl. Data Eng.
,
17
(
8
), pp.
1099
1110
.
44.
Fu
,
K.
,
Murphy
,
J.
,
Yang
,
M.
,
Otto
,
K.
,
Jensen
,
D.
, and
Wood
,
K.
,
2015
, “
Design-by-Analogy: Experimental Evaluation of a Functional Analogy Search Methodology for Concept Generation Improvement
,”
Res. Eng. Des.
,
26
(
1
), pp.
77
95
.
45.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Functional and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031006
.
46.
Chan
,
J.
,
Fu
,
K.
,
Schunn
,
C.
,
Cagan
,
J.
,
Wood
,
K.
, and
Kotovsky
,
K.
,
2011
, “
On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081004
.
47.
Chan
,
J.
,
Dow
,
S. P.
, and
Schunn
,
C. D.
,
2015
, “
Do the Best Design Ideas (Really) Come From Conceptually Distant Sources of Inspiration?
,”
Des. Stud.
,
36
, pp.
31
58
.
48.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of ‘Near’ and ‘Far’: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
49.
Srinivansan
,
V.
,
Song
,
B.
,
Luo
,
J.
,
Subburaj
,
K.
,
Rajesh Elara
,
M.
,
Blessing
,
L.
, and
Wood
,
K.
,
2017
, “
Investigating Effects of Analogical Distance on Performance of Ideation
,” ASME International Design Engineering Technical Conference (IDETC), Cleveland, OH, Aug. 6–9, Paper No. DETC2017-67752.
50.
Gentner
,
D.
, and
Markman
,
A. B.
,
1997
, “
Structure Mapping in Analogy and Similarity
,”
Am. Psychol.
,
52
(
1
), pp.
45
56
.
51.
Ward
,
T. B.
,
1998
, “
Analogical Distance and Purpose in Creative Thought: Mental Leaps Versus Mental Hops
,”
Advances in Analogy Research: Integration of Theory and Data From the Cognitive, Computational, and Neural Sciences
,
New Bulgarian University
,
Sofia, Bulgaria
.
52.
Tseng
,
I.
,
Moss
,
J.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2008
, “
The Role of Timing and Analogical Similarity in the Stimulation of Idea Generation in Design
,”
Des. Stud.
,
29
(
3
), pp.
203
221
.
53.
Wilson
,
J. O.
,
Rosen
,
D.
,
Nelson
,
B. A.
, and
Yen
,
J.
,
2010
, “
The Effects of Biological Examples in Idea Generation
,”
Des. Stud.
,
31
(
2
), pp.
169
186
.
54.
Gick
,
M. L.
, and
Holyoak
,
K. J.
,
1980
, “
Analogical Problem Solving
,”
Cognit. Psychol.
,
12
(
3
), pp.
306
355
.
55.
Leydesdorff
,
L.
,
Kushnir
,
D.
, and
Rafols
,
I.
,
2014
, “
Interactive Overlay Maps for U.S. Patent (USPTO) Data Based on International Patent Classification (IPC)
,”
Scientometrics
,
98
(
3
), pp.
1583
1599
.
56.
Kay
,
L.
,
Newman
,
N.
,
Youtie
,
J.
,
Porter
,
A. L.
, and
Rafols
,
I.
,
2014
, “
Patent Overlay Mapping: Visualizing Technological Distance
,”
J. Assoc. Inf. Sci. Technol.
,
65
(
12
), pp.
2432
2443
.
57.
Engelsman
,
E. C.
, and
van Raan
,
A. F.
,
1994
, “
A Patent-Based Cartography of Technology
,”
Res. Policy
,
23
(
1
), pp.
1
26
.
58.
Jaccard
,
P.
,
1901
, “
Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines
,”
Bull. Soc. Vaudoise Sci. Nat.
,
37
, pp.
241
272
.
59.
Von Wartburg
,
I.
,
Teichert
,
T.
, and
Rost
,
K.
,
2005
, “
Inventive Progress Measured by Multi-Stage Patent Citation Analysis
,”
Res. Policy
,
34
(
10
), pp.
1591
1607
.
60.
Leydesdorff
,
L.
, and
Vaughan
,
L.
,
2006
, “
Co‐Occurrence Matrices and Their Applications in Information Science: Extending ACA to the Web Environment
,”
J. Am. Soc. Inf. Sci. Technol.
,
57
(
12
), pp.
1616
1628
.
61.
Breschi
,
S.
,
Lissoni
,
F.
, and
Malerba
,
F.
,
2003
, “
Knowledge-Relatedness in Firm Technological Diversification
,”
Res. Policy
,
32
(
1
), pp.
69
87
.
62.
Dibiaggio
,
L.
, and
Nesta
,
L.
,
2005
, “
Patents Statistics, Knowledge Specialisation and the Organisation of Competencies
,”
Rev. d’économie Ind.
,
110
(
1
), pp.
103
126
.
63.
Hinze
,
S.
,
Reiss
,
T.
, and
Schmoch
,
U.
,
1997
,
Statistical Analysis on the Distance Between Fields of Technology
,
Fraunhofer-Inst. Systems and Innovation Research
, Karlsruhe, Germany.
64.
Boschma
,
R.
,
Balland
,
P.-A.
, and
Kogler
,
D. F.
,
2014
, “
Relatedness and Technological Change in Cities: The Rise and Fall of Technological Knowledge in U.S. Metropolitan Areas From 1981 to 2010
,”
Ind. Corporate Change
,
24
(
1
), pp.
223
250
.
65.
Rigby
,
D. L.
,
2015
, “
Technological Relatedness and Knowledge Space: Entry and Exit of U.S. Cities From Patent Classes
,”
Reg. Stud.
,
49
(
11
), pp.
1922
1937
.
66.
Alstott
,
J.
,
Triulzi
,
G.
,
Yan
,
B.
, and
Luo
,
J.
,
2017
, “
Inventors' Explorations Across Technology Domains
,”
Des. Sci.
, epub.
67.
Song
,
B.
,
Triulzi
,
G.
,
Alstott
,
J.
,
Yan
,
B.
, and
Luo
,
J.
,
2016
, “
Overlay Patent Network to Analyze the Design Space of a Technology Domain: The Case of Hybrid Electrical Vehicles
,”
DS 84: The 14th International Design Conference, DESIGN
, Cavtat, Croatia, May 16–19, pp. 1145–1154.
68.
Yan
,
B.
, and
Luo
,
J.
, 2017, “
Filtering Patent Maps for Visualization of Diversification Paths of Inventors and Organizations
,”
J. Assoc. Inf. Sci. Technol.
,
68
(
6
), pp.
1551
1563
.
69.
Kobourov
,
S. G.
,
2013
, “
Force-Directed Drawing Algorithms
,”
Handbook of Graph Drawing and Visualization
,
R.
Tamassia
, ed.,
CRC Press
, Boca Raton, FL, pp.
383
408
.
70.
Leten
,
B.
,
Belderbos
,
R.
, and
Van Looy
,
B.
,
2007
, “
Technological Diversification, Coherence, and Performance of Firms
,”
J. Prod. Innovation Manage.
,
24
(
6
), pp.
567
579
.
71.
Frenken
,
K.
, and
Nuvolari
,
A.
,
2004
, “
Entropy Statistics as a Framework to Analyse Technological Evolution
,”
Applied Evolutionary Economics and Complex Systems
, Edward Elgar, Cheltenham, UK, pp.
95
133
.
72.
Teece
,
D. J.
,
Rumelt
,
R.
,
Dosi
,
G.
, and
Winter
,
S.
,
1994
, “
Understanding Corporate Coherence: Theory and Evidence
,”
J. Econ. Behav. Organ.
,
23
(
1
), pp.
1
30
.
73.
Nelson
,
R. R.
, and
Winter
,
S. G.
,
1982
,
An Evolutionary Theory of Economic Change
,
Harvard University Press
, Cambridge, MA.
74.
Winter
,
S. G.
,
2000
, “
The Satisficing Principle in Capability Learning
,”
Strategic Manage. J.
,
21
(
10–11
), pp.
981
996
.
75.
Winston
,
P. H.
,
1992
,
Artificial Intelligence
, 3rd ed.,
Addison-Wesley Longman Publishing
, Reading, MA.
76.
Guertler
,
M. R.
,
von Saucken
,
C.
,
Schneider
,
M.
, and
Lindemann
,
U.
,
2015
, “
How to Search for Open Innovation Partners?
,”
DS 80-8: The 20th International Conference on Engineering Design
(
ICED
), Milan, Italy, July 27–30, pp.
21
30
.
You do not currently have access to this content.