Quantifying the ability of a digital design concept to perform a function currently requires the use of costly and intensive solutions such as computational fluid dynamics. To mitigate these challenges, the authors of this work propose a deep learning approach based on three-dimensional (3D) convolutions that predict functional quantities of digital design concepts. This work defines the term functional quantity to mean a quantitative measure of an artifact's ability to perform a function. Several research questions are derived from this work: (i) Are learned 3D convolutions able to accurately calculate these quantities, as measured by rank, magnitude, and accuracy? (ii) What do the latent features (that is, internal values in the model) discovered by this network mean? (iii) Does this work perform better than other deep learning approaches at calculating functional quantities? In the case study, a proposed network design is tested for its ability to predict several functions (sitting, storing liquid, emitting sound, displaying images, and providing conveyance) based on test form classes distinct from training class. This study evaluates several approaches to this problem based on a common architecture, with the best approach achieving F scores of >0.9 in three of the five functions identified. Testing trained models on novel input also yields accuracy as high as 98% for estimating rank of these functional quantities. This method is also employed to differentiate between decorative and functional headwear, which yields an 84.4% accuracy and 0.786 precision.

References

References
1.
Vasudevan
,
N.
, and
Tucker
,
C. S.
,
2013
, “
Digital Representation of Physical Artifacts: The Effect of Low Cost, High Accuracy 3D Scanning Technologies on Engineering Education, Student Learning and Design Evaluation
,”
ASME
Paper No. DETC2013-12651.
2.
Tucker
,
C. S.
,
Saint John
,
D. B.
,
Behoora
,
I.
, and
Marcireau
,
A.
,
2014
, “
Open Source 3D Scanning and Printing for Design Capture and Realization
,”
ASME
Paper No. DETC2014-34801.
3.
Shyy
,
W.
,
Udaykumar
,
H. S.
,
Rao
,
M. M.
, and
Smith
,
R. W.
,
2012
,
Computational Fluid Dynamics With Moving Boundaries
,
Courier
,
North Chelmsford, MA
.
4.
Buede
,
D. M.
, and
Miller
,
W. D.
,
2016
,
The Engineering Design of Systems: Models and Methods
,
Wiley
,
Hoboken, NJ
.
5.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2004
, “
The Situated Function–Behaviour–Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.
6.
Chandrasegaran
,
S. K.
,
Ramani
,
K.
,
Sriram
,
R. D.
,
Horváth
,
I.
,
Bernard
,
A.
,
Harik
,
R. F.
, and
Gao
,
W.
,
2013
, “
The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems
,”
Comput. Aided Des.
,
45
(
2
), pp.
204
228
.
7.
Chen
,
Y.
,
Liu
,
Z.-L.
, and
Xie
,
Y.-B.
,
2012
, “
A Knowledge-Based Framework for Creative Conceptual Design of Multi-Disciplinary Systems
,”
Comput. Aided Des.
,
44
(
2
), pp.
146
153
.
8.
Qi
,
J.
,
Hu
,
J.
,
Zhu
,
G.
, and
Peng
,
Y.
,
2015
, “
Automatically Synthesizing Principle Solutions in Multi-Disciplinary Conceptual Design With Functional and Structural Knowledge
,”
ASME
Paper No. DETC2015-46373.
9.
Bhatt
,
M.
,
Hois
,
J.
, and
Kutz
,
O.
,
2012
, “
Ontological Modelling of Form and Function for Architectural Design
,”
Appl. Ontology
,
7
(
3
), pp.
233
267
.
10.
Townsend
,
J. D.
,
Kang
,
W.
,
Montoya
,
M. M.
, and
Calantone
,
R. J.
,
2013
, “
Brand-Specific Design Effects: Form and Function
,”
J. Prod. Innovation Manage.
,
30
(
5
), pp.
994
1008
.
11.
Kang
,
S. W.
, and
Tucker
,
C. S.
,
2015
, “
Automated Concept Generation Based on Function-Form Synthesis
,”
ASME
Paper No. DETC2015-47687.
12.
Tseng
,
I.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
M.
,
2013
, “
Form Function Fidelity
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011006
.
13.
Roy
,
U.
,
Pramanik
,
N.
,
Sudarsan
,
R.
,
Sriram
,
R. D.
, and
Lyons
,
K. W.
,
2001
, “
Function-to-Form Mapping: Model, Representation and Applications in Design Synthesis
,”
Comput. Aided Des.
,
33
(
10
), pp.
699
719
.
14.
Tsai
,
H.-C.
,
Hsiao
,
S.-W.
, and
Hung
,
F.-K.
,
2006
, “
An Image Evaluation Approach for Parameter-Based Product Form and Color Design
,”
Comput. Aided Des.
,
38
(
2
), pp.
157
171
.
15.
Sylcott
,
B.
,
Cagan
,
J.
, and
Tabibnia
,
G.
,
2013
, “
Understanding Consumer Tradeoffs Between Form and Function Through Metaconjoint and Cognitive Neuroscience Analyses
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101002
.
16.
Sylcott
,
B.
, and
Cagan
,
J.
,
2014
, “
Modeling Aggregate Choice for Form and Function Through Metaconjoint Analysis
,”
ASME J. Mech. Des.
,
136
(
12
), p.
124501
.
17.
Orsborn
,
S.
,
Cagan
,
J.
, and
Boatwright
,
P.
,
2009
, “
Quantifying Aesthetic Form Preference in a Utility Function
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061001
.
18.
Tseng
,
I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2012
, “
Concurrent Optimization of Computationally Learned Stylistic Form and Functional Goals
,”
ASME J. Mech. Des.
,
134
(
11
), p.
111006
.
19.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L.
,
Stone
,
R.
, and
McAdams
,
D.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021007
.
20.
Lowe
,
D. G.
,
1999
, “
Object Recognition From Local Scale-Invariant Features
,”
Seventh IEEE International Conference on Computer Vision
(
ICCV
), Kerkyra, Greece, Sept. 20–27, pp.
1150
1157
.
21.
Bay
,
H.
,
Tuytelaars
,
T.
, and
Van Gool
,
L.
,
2006
, “
Surf: Speeded Up Robust Features
,” European Conference on Computer Vision (
ECCV
), Graz, Austria, May 7–13, pp.
404
417
.
22.
Rublee
,
E.
,
Rabaud
,
V.
,
Konolige
,
K.
, and
Bradski
,
G.
,
2011
, “
Orb: An Efficient Alternative to Sift or Surf
,”
IEEE International Conference on Computer Vision
(
ICCV
), Barcelona, Spain, Nov. 6–13, pp.
2564
2571
.
23.
Dalal
,
N.
, and
Triggs
,
B.
,
2005
, “
Histograms of Oriented Gradients for Human Detection
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(
CVPR
), San Diego, CA, June 20–25, pp.
886
893
.
24.
Tombari
,
F.
,
Salti
,
S.
, and
Di Stefano
,
L.
,
2011
, “
A Combined Texture-Shape Descriptor for Enhanced 3D Feature Matching
,”
18th IEEE International Conference on Image Processing
(
ICIP
), Brussels, Belgium, Sept. 11–14, pp.
809
812
.
25.
Song
,
M.
,
Sun
,
Z.
,
Liu
,
K.
, and
Lang
,
X.
,
2015
, “
Iterative 3D Shape Classification by Online Metric Learning
,”
Comput. Aided Geom. Des.
,
35–36
, pp.
192
205
.
26.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.
27.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
28.
Russakovsky
,
O.
,
Deng
,
J.
,
Su
,
H.
,
Krause
,
J.
,
Satheesh
,
S.
,
Ma
,
S.
,
Huang
,
Z.
,
Karpathy
,
A.
,
Khosla
,
A.
,
Bernstein
,
M.
,
Berg, A.
, and
Fei-Fei, L.
,
2015
, “
Imagenet Large Scale Visual Recognition Challenge
,”
Int. J. Comput. Vision
,
115
(
3
), pp.
211
252
.
29.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “
ImageNet Classification With Deep Convolutional Neural Networks
,” 25th International Conference on Neural Information Processing Systems (
NIPS
), Lake Tahoe, NV, Dec. 3–6, pp.
1097
1105
.
30.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2014
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,” preprint
arXiv:1409.1556
.
31.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
IEEE Conference on Computer Vision and Pattern Recognition
(
CVPR
), Las Vegas, NV, June 27–30, pp.
770
778
.
32.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3D Shapenets: A Deep Representation for Volumetric Shapes
,”
IEEE Conference on Computer Vision and Pattern Recognition
(
CVPR
), Boston, MA, June 7–12, pp.
1912
1920
.
33.
Chang
,
A. X.
,
Funkhouser
,
T.
,
Guibas
,
L.
,
Hanrahan
,
P.
,
Huang
,
Q.
,
Li
,
Z.
,
Savarese
,
S.
,
Savva
,
M.
,
Song
,
S.
,
Su
,
H.
,
Xiao
,
J.
,
Yi
,
L.
, and
Yu
,
F.
,
2015
, “
ShapeNet: An Information-Rich 3D Model Repository
,” preprint
arXiv:1512.03012
.
34.
Maturana
,
D.
, and
Scherer
,
S.
,
2015
, “
Voxnet: A 3D Convolutional Neural Network for Real-Time Object Recognition
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
922
928
.
35.
Su
,
H.
,
Maji
,
S.
,
Kalogerakis
,
E.
, and
Learned-Miller
,
E.
,
2015
, “
Multi-View Convolutional Neural Networks for 3D Shape Recognition
,”
International Conference on Computer Vision
(
ICCV
), Santiago, Chile, Dec. 7–13, pp.
945
953
.
36.
Shi
,
B.
,
Bai
,
S.
,
Zhou
,
Z.
, and
Bai
,
X.
,
2015
, “
Deeppano: Deep Panoramic Representation for 3-D Shape Recognition
,”
IEEE Signal Process. Lett.
,
22
(
12
), pp.
2339
2343
.
37.
Su
,
H.
,
Qi
,
C. R.
,
Li
,
Y.
, and
Guibas
,
L. J.
,
2015
, “
Render for CNN: Viewpoint Estimation in Images Using Cnns Trained With Rendered 3D Model Views
,”
IEEE International Conference on Computer Vision
(
ICCV
), Santiago, Chile, Dec. 7–13, pp.
2686
2694
.
38.
Boscaini
,
D.
,
Masci
,
J.
,
Rodolà
,
E.
, and
Bronstein
,
M.
,
2016
, “
Learning Shape Correspondence With Anisotropic Convolutional Neural Networks
,”
International Conference on Neural Information Processing Systems
(
NIPS
), Barcelona, Spain, Dec. 5–10, pp.
3189
3197
.
39.
Shu
,
Z.
,
Qi
,
C.
,
Xin
,
S.
,
Hu
,
C.
,
Wang
,
L.
,
Zhang
,
Y.
, and
Liu
,
L.
,
2016
, “
Unsupervised 3D Shape Segmentation and Co-Segmentation Via Deep Learning
,”
Comput. Aided Geom. Des.
,
43
, pp.
39
52
.
40.
Zhang
,
Y.
,
Bai
,
M.
,
Kohli
,
P.
,
Izadi
,
S.
, and
Xiao
,
J.
,
2016
, “
Deepcontext: Context-Encoding Neural Pathways for 3D Holistic Scene Understanding
,” preprint
arXiv:1603.04922
.
41.
Maas
,
A. L.
,
Hannun
,
A. Y.
, and
Ng
,
A. Y.
,
2013
, “
Rectifier Nonlinearities Improve Neural Network Acoustic Models
,”
30th International Conference on Machine Learning
(
ICML
), Atlanta, GA, June 16–21.
42.
Glorot
,
X.
, and
Bengio
,
Y.
,
2010
, “
Understanding the Difficulty of Training Deep Feedforward Neural Networks
,” 13th International Conference on Artificial Intelligence and Statistics (
AISTATS
), Sardinia, Italy, May 13–15, pp.
249
256
.
43.
Rothe
,
R.
,
Timofte
,
R.
, and
Van Gool
,
L.
,
2015
, “
Dex: Deep Expectation of Apparent Age From a Single Image
,”
IEEE International Conference on Computer Vision Workshops
(
ICCVW
), Santiago, Chile, Dec. 7–13, pp.
10
15
.
44.
Nooruddin
,
F. S.
, and
Turk
,
G.
,
2003
, “
Simplification and Repair of Polygonal Models Using Volumetric Techniques
,”
IEEE Trans. Visualization Comput. Graphics
,
9
(
2
), pp.
191
205
.
45.
Riegler
,
G.
,
Ulusoy
,
A. O.
, and
Geiger
,
A.
,
2017
, “
Octnet: Learning Deep 3D Representations at High Resolutions
,”
Conference on Computer Vision and Pattern Recognition
(
CVPR
), Honolulu, HI, July 21–26.
46.
Theano Development Team
,
2016
, “
Theano: A Python Framework for Fast Computation of Mathematical Expressions
,” preprint
arXiv:abs/1605.02688
.
47.
Kingma
,
D.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” preprint
arXiv:1412.6980
.
48.
Zeiler
,
M. D.
, and
Fergus
,
R.
,
2014
, “
Visualizing and Understanding Convolutional Networks
,”
European Conference on Computer Vision
(
ECCV
), Zürich, Switzerland, Sept. 6–12, pp.
818
833
.
You do not currently have access to this content.