To solve a design problem, sometimes it is necessary to identify the feasible design space. For design spaces with implicit constraints, sampling methods are usually used. These methods typically bound the design space; that is, limit the range of design variables. But bounds that are too small will fail to cover all possible designs, while bounds that are too large will waste sampling budget. This paper tries to solve the problem of efficiently discovering (possibly disconnected) feasible domains in an unbounded design space. We propose a data-driven adaptive sampling technique—ε-margin sampling, which learns the domain boundary of feasible designs and also expands our knowledge on the design space as available budget increases. This technique is data-efficient, in that it makes principled probabilistic trade-offs between refining existing domain boundaries versus expanding the design space. We demonstrate that this method can better identify feasible domains on standard test functions compared to both random and active sampling (via uncertainty sampling). However, a fundamental problem when applying adaptive sampling to real world designs is that designs often have high dimensionality and thus require (in the worst case) exponentially more samples per dimension. We show how coupling design manifolds with ε-margin sampling allows us to actively expand high-dimensional design spaces without incurring this exponential penalty. We demonstrate this on real-world examples of glassware and bottle design, where our method discovers designs that have different appearance and functionality from its initial design set.

References

References
1.
Yannou
,
B.
,
Moreno
,
F.
,
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2005
, “
Faster Generation of Feasible Design Points
,”
ASME
Paper No. DETC2005-85449.
2.
Devanathan
,
S.
, and
Ramani
,
K.
,
2010
, “
Creating Polytope Representations of Design Spaces for Visual Exploration Using Consistency Techniques
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081011
.
3.
Larson
,
B. J.
, and
Mattson
,
C. A.
,
2012
, “
Design Space Exploration for Quantifying a System Model's Feasible Domain
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041010
.
4.
Lee
,
T. H.
, and
Jung
,
J. J.
,
2008
, “
A Sampling Technique Enhancing Accuracy and Efficiency of Metamodel-Based RBDO: Constraint Boundary Sampling
,”
Comput. Struct.
,
86
(
13
), pp.
1463
1476
.
5.
Zhuang
,
X.
, and
Pan
,
R.
,
2012
, “
A Sequential Sampling Strategy to Improve Reliability-Based Design Optimization With Implicit Constraint Functions
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021002
.
6.
Huang
,
Y.-C.
, and
Chan
,
K.-Y.
,
2010
, “
A Modified Efficient Global Optimization Algorithm for Maximal Reliability in a Probabilistic Constrained Space
,”
ASME J. Mech. Des.
,
132
(
6
), p.
061002
.
7.
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2011
, “
A Design Preference Elicitation Query as an Optimization Process
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111004
.
8.
Chen
,
W.
,
Fuge
,
M.
, and
Chazan
,
J.
,
2017
, “
Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051102
.
9.
Chen
,
W.
,
Chazan
,
J.
, and
Fuge
,
M.
,
2016
, “
How Designs Differ: Non-Linear Embeddings Illuminate Intrinsic Design Complexity
,”
ASME
Paper No. DETC2016-60112.
10.
Regier
,
J. C.
, and
Stark
,
P. B.
,
2015
, “
Mini-Minimax Uncertainty Quantification for Emulators
,”
SIAM/ASA J. Uncertainty Quantif.
,
3
(
1
), pp.
686
708
.
11.
Rasmussen
,
C.
, and
Williams
,
C.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
, Cambridge, MA.
12.
Williams
,
C. K.
, and
Barber
,
D.
,
1998
, “
Bayesian Classification With Gaussian Processes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
20
(
12
), pp.
1342
1351
.
13.
Minka
,
T. P.
,
2001
, “
A Family of Algorithms for Approximate Bayesian Inference
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
14.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
,
57
(
1
), pp.
97
109
.
15.
Settles
,
B.
, 2009, “
Active Learning Literature Survey
,” University of Wisconsin–Madison, Madison, WI, Report No.
1648
.
16.
Lewis
,
D. D.
, and
Catlett
,
J.
,
2012
, “
Heterogeneous Uncertainty Sampling for Supervised Learning
,”
11th International Conference on Machine Learning
and Applications (
ICMLA
), Boca Raton, FL, Dec. 12–15, pp.
148
156
.
17.
Lewis
,
D. D.
, and
Gale
,
W. A.
,
1994
, “
A Sequential Algorithm for Training Text Classifiers
,”
17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, Dublin, Ireland, July 3–6, pp.
3
12
.
18.
Bryan
,
B.
,
Schneider
,
J.
,
Nichol
,
R.
,
Miller
,
C.
,
Genovese
,
C. R.
, and
Wasserman
,
L.
,
2005
, “
Active Learning for Identifying Function Threshold Boundaries
,” Advances in Neural Information Processing Systems 18, MIT Press, Cambridge, MA, pp.
163
170
.
19.
Kapoor
,
A.
,
Grauman
,
K.
,
Urtasun
,
R.
, and
Darrell
,
T.
,
2007
, “
Active Learning With Gaussian Processes for Object Categorization
,”
IEEE 11th International Conference on Computer Vision
(
ICCV
), Rio de Janeiro, Brazil, Oct. 14–21, pp.
1
8
.
20.
Kapoor
,
A.
,
Grauman
,
K.
,
Urtasun
,
R.
, and
Darrell
,
T.
,
2010
, “
Gaussian Processes for Object Categorization
,”
Int. J. Comput. Vision
,
88
(
2
), pp.
169
188
.
21.
Gotovos
,
A.
,
Casati
,
N.
,
Hitz
,
G.
, and
Krause
,
A.
,
2013
, “
Active Learning for Level Set Estimation
,”
23rd International Joint Conference on Artificial Intelligence
(
IJCAI
), Beijing, China, Aug. 3–9, pp.
1344
1350
.
22.
Hoang
,
T. N.
,
Low
,
B.
,
Jaillet
,
P.
, and
Kankanhalli
,
M.
,
2014
, “
Nonmyopic ε-Bayes-Optimal Active Learning of Gaussian Processes
,” 31st International Conference on Machine Learning (
ICML
), Beijing, China, June 21–26, pp.
739
747
.
23.
Schreiter
,
J.
,
Nguyen-Tuong
,
D.
,
Eberts
,
M.
,
Bischoff
,
B.
,
Markert
,
H.
, and
Toussaint
,
M.
,
2015
, “
Safe Exploration for Active Learning With Gaussian Processes
,”
Joint European Conference on Machine Learning and Knowledge Discovery in Databases
, Porto, Portugal, Sept. 7–11, pp.
133
149
.
24.
Freytag
,
A.
,
Rodner
,
E.
,
Bodesheim
,
P.
, and
Denzler
,
J.
,
2013
, “
Labeling Examples That Matter: Relevance-Based Active Learning With Gaussian Processes
,”
German Conference on Pattern Recognition
(
GCPR
), Hannover, Germany, Sept. 12–15, pp.
282
291
.
25.
Freytag
,
A.
,
Rodner
,
E.
, and
Denzler
,
J.
,
2014
, “
Selecting Influential Examples: Active Learning With Expected Model Output Changes
,”
European Conference on Computer Vision
(
ECCV
), Amsterdam, The Netherlands, Oct. 8–16, pp.
562
577
.
26.
Basudhar
,
A.
, and
Missoum
,
S.
,
2010
, “
An Improved Adaptive Sampling Scheme for the Construction of Explicit Boundaries
,”
Struct. Multidiscip. Optim.
,
42
(
4
), pp.
517
529
.
27.
Basudhar
,
A.
,
Dribusch
,
C.
,
Lacaze
,
S.
, and
Missoum
,
S.
,
2012
, “
Constrained Efficient Global Optimization With Support Vector Machines
,”
Struct. Multidiscip. Optim.
,
46
(
2
), pp.
201
221
.
28.
Singh
,
P.
,
van der Herten
,
J.
,
Deschrijver
,
D.
,
Couckuyt
,
I.
, and
Dhaene
,
T.
,
2017
, “
A Sequential Sampling Strategy for Adaptive Classification of Computationally Expensive Data
,”
Struct. Multidiscip. Optim.
,
55
(
4
), pp.
1425
1438
.
29.
Bouneffouf
,
D.
,
Laroche
,
R.
,
Urvoy
,
T.
,
Féraud
,
R.
, and
Allesiardo
,
R.
,
2014
, “
Contextual Bandit for Active Learning: Active Thompson Sampling
,”
International Conference on Neural Information Processing
(
ICONIP
), Kyoto, Japan, Oct. 16–21, pp.
405
412
.
30.
Hsu
,
W.-N.
, and
Lin
,
H.-T.
,
2015
, “
Active Learning by Learning
,” 29th Conference on Association for the Advancement of Artificial Intelligence (
AAAI
), Austin, TX, Jan. 25–30, pp.
2659
2665
.
31.
Bellman
,
R.
,
1957
,
Dynamic Programming
,
Princeton University Press
, Princeton, NJ.
32.
Averkiou
,
M.
,
Kim
,
V. G.
,
Zheng
,
Y.
, and
Mitra
,
N. J.
,
2014
, “
ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis
,”
Comput. Graphics Forum
,
33
(
2
), pp.
125
134
.
33.
Yumer
,
M. E.
,
Asente
,
P.
,
Mech
,
R.
, and
Kara
,
L. B.
,
2015
, “
Procedural Modeling Using Autoencoder Networks
,”
28th Annual ACM Symposium on User Interface Software & Technology
(
UIST
), Charlotte, NC, Nov. 11–15, pp.
109
118
.
34.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
ASME
Paper No. DETC2016-60091.
35.
Yumer
,
M. E.
,
Chaudhuri
,
S.
,
Hodgins
,
J. K.
, and
Kara
,
L. B.
,
2015
, “
Semantic Shape Editing Using Deformation Handles
,”
ACM Trans. Graphics
,
34
(
4
), pp.
86:1
86:12
.
36.
Van Der Maaten
,
L.
,
Postma
,
E.
, and
Van den Herik
,
J.
,
2009
, “
Dimensionality Reduction: A Comparative
Review,” Tilburg University, Tilburg, The Netherlands, Technical Report No.
TiCC-TR 2009-005
.
37.
Bengio
,
Y.
,
Courville
,
A.
, and
Vincent
,
P.
,
2013
, “
Representation Learning: A Review and New Perspectives
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
8
), pp.
1798
1828
.
38.
Rodrigues
,
F.
,
Pereira
,
F.
, and
Ribeiro
,
B.
,
2014
, “
Gaussian Process Classification and Active Learning With Multiple Annotators
,”
31st International Conference on Machine Learning
(
ICML
), Beijing, China, June 21–26, pp.
433
441
.
39.
Sharmanska
,
V.
,
Hernández-Lobato
,
D.
,
Miguel Hernandez-Lobato
,
J.
, and
Quadrianto
,
N.
,
2016
, “
Ambiguity Helps: Classification With Disagreements in Crowdsourced Annotations
,”
IEEE Conference on Computer Vision and Pattern Recognition
(
CVPR
), Las Vegas, NV, June 27–30, pp.
2194
2202
.
You do not currently have access to this content.