With the recent advances in information gathering techniques, product performances and environment/operation conditions can be monitored, and product usage data, including time-dependent product performance feature data and field data (i.e., environmental/operational data), can be continuously collected during the product usage stage. These technologies provide opportunities to improve product design considering product functional performance degradation. The challenge lies in how to assess data of product functional performance degradation for identifying relevant field factors and changing design parameters. An integrated approach for design improvement is developed in this research to transform time-dependent usage data to design information. Many data modeling and analysis techniques such as hierarchal function model, performance feature dimension reduction method, Gaussian mixed model (GMM), and data clustering method are employed in this approach. These methods are used to extract principal features from collected performance features, assess product functional performance degradation, and group field data into meaningful data clusters. The abnormal field data causing severe and rapid product function degradation are obtained based on the field data clusters. A redesign necessity index (RNI) is defined for each design parameter related to severely degraded functions based on the relationships between this design parameter and abnormal field data. An associate relationship matrix (ARM) is constructed to calculate the RNI of each design parameter for identifying the to-be-modified design parameters with high priorities for product improvement. The effectiveness of this new approach is demonstrated through a case study for the redesign of a large tonnage crawler crane.

References

References
1.
Meng
,
X. H.
,
Xie
,
Y. B.
, and
Dai
,
X. D.
,
2010
, “
Methodology of Designing for Time-Varying Performance of Complex Products
,”
Chin. J. Mech. Eng.
,
46
(
1
), pp.
128
133
.
2.
Vichare
,
N.
,
Rodgers
,
P.
,
Eveloy
,
V.
, and
Pecht
,
M.
,
2007
, “
Environment and Usage Monitoring of Electronic Products for Health Assessment and Product Design
,”
Qual. Technol. Quant. Manage.
,
4
(
2
), pp.
235
250
.
3.
Chen
,
L. H.
, and
Ko
,
W. C.
,
2009
, “
Fuzzy Linear Programming Models for New Product Design Using QFD With FMEA
,”
Appl. Math. Model.
,
33
(
2
), pp.
633
647
.
4.
Ma
,
H. Z.
,
Chu
,
X. N.
,
Xue
,
D. Y.
, and
Chen
,
D. P.
, 2016, “
Identification of To-Be-Improved Components for Redesign of Complex Products and Systems Based on Fuzzy QFD and FMEA
,”
J. Intell. Manuf.
, epub.
5.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Wie
,
M. V.
,
2005
, “
The Function-Failure Design Method
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
397
407
.
6.
Isermann
,
R.
,
2005
, “
Model-Based Fault-Detection and Diagnosis-Status and Applications
,”
Annu. Rev. Control
,
29
(
1
), pp.
71
85
.
7.
Gargama
,
H.
, and
Chaturvedi
,
S. K.
,
2011
, “
Criticality Assessment Models for Failure Mode Effects and Criticality Analysis Using Fuzzy Logic
,”
IEEE Trans. Reliab.
,
60
(
1
), pp.
102
110
.
8.
Shin
,
J. H.
,
Kiritsis
,
D.
, and
Xirouchakis
,
P.
,
2015
, “
Design Modification Supporting Method Based on Product Usage Data in Closed-Loop PLM
,”
Int. J. Comput. Integr. Manuf.
,
28
(
6
), pp.
551
568
.
9.
Carlson
,
J.
, and
Murphy
,
R. R.
,
2003
, “
Reliability Analysis of Mobile Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Taipei, Taiwan, Sept. 14–19, pp.
274
281
.
10.
Searls
,
D.
,
Dishongh
,
T.
, and
Dujari
,
P.
,
2001
, “
A Strategy for Enabling Data Driven Product Decisions Through a Comprehensive Understanding of the Usage Environment
,”
The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition
, Maui, HI, July 8–13, pp.
8
13
.
11.
Rybak
,
J. M.
,
2006
, “
Remote Condition Monitoring Using Open-System Wireless Technologies
,”
Sound Vib.
,
40
(
2
), pp.
16
20
.
12.
Malhi
,
A.
, and
Gao
,
R. X.
,
2004
, “
PCA-Based Feature Selection Scheme for Machine Defect Classification
,”
IEEE Trans. Instrum. Meas.
,
53
(
6
), pp.
1517
1525
.
13.
Boschetti
,
F.
,
2005
, “
Dimensionality Reduction and Visualization of Geoscientific Images Via Locally Linear Embedding
,”
Comput. Geosci.
,
31
(
6
), pp.
689
697
.
14.
Belkin
,
M.
, and
Niyogi
,
P.
,
2003
, “
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
,”
Neural Comput.
,
15
(
6
), pp.
1373
1396
.
15.
Yang
,
K.
, and
Yang
,
G.
,
1997
, “
Performance Degradation Analysis Using Principal Component Method
,”
Annual Reliability and Maintainability Symposium
(
RAMS
), Philadelphia, PA, Jan. 13–16, pp.
136
141
.
16.
Wu
,
J.
,
Wang
,
J.
, and
Liu
,
L.
,
2007
, “
Feature Extraction Via KPCA for Classification of Gait Patterns
,”
Hum. Mov. Sci.
,
26
(
3
), pp.
393
411
.
17.
Cao
,
L. J.
,
Chua
,
K. S.
,
Chong
,
W. K.
,
Lee
,
H. P.
, and
Gu
,
Q. M.
,
2003
, “
A Comparison of PCA, KPCA and ICA for Dimensionality Reduction in Support Vector Machine
,”
Neurocomputing
,
55
(
1–2
), pp.
321
336
.
18.
Qiu
,
L.
,
Yuan
,
S.
,
Chang
,
F. K.
,
Bao
,
Q.
, and
Mei
,
H.
,
2014
, “
On-Line Updating Gaussian Mixture Model for Aircraft Wing Spar Damage Evaluation Under Time-Varying Boundary Condition
,”
Smart Mater. Struct.
,
23
(
12
), p.
125001
.
19.
Si
,
X. S.
,
Wang
,
W. B.
,
Chang
,
H. H.
, and
Zhou
,
D. H.
,
2011
, “
Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
.
20.
Ertunc
,
H. M.
,
Loparo
,
K. A.
, and
Ocak
,
H.
,
2001
, “
Tool Wear Condition Monitoring in Drilling Operations Using Hidden Markov Models (HMMs)
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1363
1384
.
21.
Huang
,
R.
,
Xi
,
L.
,
Li
,
X.
,
Liu
,
C. R.
,
Qiu
,
H.
, and
Lee
,
J.
,
2006
, “
Residual Life Predictions for Ball Bearings Based on Self-Organizing Map and Back Propagation Neural Network Methods
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
193
207
.
22.
Pan
,
Y.
,
Chen
,
J.
, and
Guo
,
L.
,
2009
, “
Robust Bearing Performance Degradation Assessment Method Based on Improved Wavelet Packet–Support Vector Data Description
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
669
681
.
23.
Yu
,
J.
,
2011
, “
Bearing Performance Degradation Assessment Using Locality Preserving Projections and Gaussian Mixture Models
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2573
2588
.
24.
Dong
,
Y.
,
Fang
,
F.
, and
Gu
,
Y.
,
2013
, “
Dynamic Evaluation of Wind Turbine Health Condition Based on Gaussian Mixture Model and Evidential Reasoning
,”
J. Renewable Sustainable Energy
,
5
(
3
), p.
033117
.
25.
Banfield
,
J. D.
, and
Raftery
,
A. E.
,
1989
, “
Model-Based Gaussian and Non-Gaussian Clustering
,”
Biometrics
,
49
(
3
), pp.
803
821
.
26.
Zhao
,
Y.
,
Hong
,
H.
,
Jiang
,
G.
,
Chen
,
W.
, and
Wang
,
H.
,
2014
, “
Conflict Resolution for Product Performance Requirements Based on Propagation Analysis in the Extension Theory
,”
Adv. Mech. Eng.
,
6
, p. 589345.
27.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2004
, “
The Situated Function–Behaviour–Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.
28.
Xie
,
Y. B.
,
2007
, “
Some Basic Concepts in Modern Design Theory
,”
Chin. J. Mech. Eng.
,
43
(
11
), pp.
7
16
.
29.
Dempster
,
A. P.
,
Laird
,
N. M.
, and
Rubin
,
D. B.
,
1977
, “
Maximum Likelihood From Incomplete Data Via the EM Algorithm
,”
J. R. Stat. Soc.: Ser. B
,
39
(
1
), pp.
1
38
.
30.
Goldberger
,
J.
,
Gordon
,
S.
, and
Greenspan
,
H.
,
2003
, “
An Efficient Image Similarity Measure Based on Approximations of KL-Divergence Between Two Gaussian Mixtures
,”
Ninth IEEE International Conference on Computer Vision
(
ICCV
), Nice, France, Oct. 13–16, pp.
487
493
.
31.
Bezdek
,
J. C.
,
Ehrlich
,
R.
, and
Full
,
W.
,
1984
, “
FCM: The Fuzzy C-Means Clustering Algorithm
,”
Comput. Geosci.
,
10
(
2–3
), pp.
191
203
.
32.
Tsekouras
,
G. E.
, and
Sarimveis
,
H.
,
2004
, “
A New Approach for Measuring the Validity of the Fuzzy C-Means Algorithm
,”
Adv. Eng. Software
,
35
(
8–9
), pp.
567
575
.
You do not currently have access to this content.