This paper addresses the problem of mapping a vector of input variables (corresponding to discrete samples from a time-varying input) to a vector of output variables (discrete samples of the time-dependent response). This mapping is typically performed by a mechanistic model. However, when the mechanistic model is complex and dynamic, the computational effort to iteratively generate the response for design purposes can be burdensome. Metamodels (or, surrogate models) can be computationally efficient replacements, especially when the input variables have some amplitude and frequency bounds. Herein, a simple metamodel in the form of a transfer matrix is created from a matrix of a few training inputs and a corresponding matrix of matching responses provided by simulations of the dynamic mechanistic model. A least-squares paradigm reveals a simple way to link the input matrix to the columns of the response matrix. Application of singular value decomposition (SVD) introduces significant computational advantages since it provides matrices whose properties give, in an elegant fashion, the transfer matrix. The efficacy of the transfer matrix is shown through an investigation of a nonlinear, underdamped, double mass–spring–damper system. Arbitrary excitations and selected sinusoids are applied to check accuracy, speed and robustness of the methodology. The sources of errors are identified and ways to mitigate them are discussed. When compared to the ubiquitous Kriging approach, the transfer matrix method shows similar accuracy but much reduced computation time.

References

1.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Computer-Based Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
2.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Kock
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
3.
Simpson
,
T. W.
,
Lin
,
D. J. K.
, and
Chen
,
W.
,
2001
, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
,
2
(
3
), pp.
209
240
.http://www.personal.psu.edu/users/j/x/jxz203/lin/Lin_pub/2001_IJRA.pdf
4.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchel
,
J. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
5.
Simpson
,
T. W.
,
Maurey
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.
6.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
,
43
(
4
), pp.
853
863
.
7.
Van Beers
,
W. C. M.
, and
Kleijnen
,
J. P. C.
,
2003
, “
Kriging for Interpolation in Random Simulation
,”
J. Oper. Res. Soc.
,
54
(
3
), pp.
255
262
.
8.
Romero
,
D. A.
,
Amon
,
C. H.
, and
Finger
,
S.
,
2006
, “
On Adaptive Sampling for Single and Multiple-Response Bayesian Surrogate Models
,”
ASME
Paper No. DETC2006-99210.
9.
Romero
,
D. A.
,
Amon
,
C. H.
, and
Finger
,
S.
,
2003
, “
Modelling Time-Dependent Systems Using Multi-Stage Bayesian Surrogates
,”
ASME
Paper No. IMECE2003-55049.
10.
Romero
,
D. A.
,
Amon
,
C. H.
,
Finger
,
S.
, and
Verdinelli
,
I.
,
2004
, “
Multi-Stage Bayesian Surrogates for the Design of Time-Dependent Systems
,”
ASME
Paper No. DETC2004-57510.
11.
Savage
,
G. J.
,
Son
,
Y. K.
, and
Seecharan
,
T. S.
,
2013
, “
Probability-Based Prediction of Degrading Dynamic Systems
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031002
.
12.
Wehrwein
,
D.
, and
Mourelatos
,
Z. P.
,
2009
, “
Optimization of Engine Torque Management Under Uncertainty for Vehicle Driveline Clunk Using Time-Dependent Meta-Models
,”
ASME J. Mech. Des.
,
131
(
5
), p.
051001
.
13.
Balchanos
,
M.
,
Moon
,
K.
,
Weston
,
N.
, and
Mavris
,
D.
,
2008
, “
A Dynamic Surrogate Model Technique for Power Systems Modeling and Simulation
,”
SAE
Paper No. 2008-01-2887.
14.
Ansari
,
H.
,
Tupy
,
M.
,
Datar
,
M.
, and
Negrut
,
D.
,
2010
, “
Construction and Use of Surrogate Models for the Dynamic Analysis of Multibody Systems
,”
SAE Int. J. Passeng. Cars-Mech. Syst.
,
3
(
1
), pp.
8
20
.
15.
Fouladinejad
,
N.
,
Fouladinejad
,
N.
,
Jalil
,
M. K. A.
, and
Taib
,
J. M.
,
2016
, “
Development of Surrogate-Based Vehicle Dynamic Model to Reduce Computational Delays in a Driving Simulator
,”
Simulation
,
92
(
12
), pp.
1087
1102
.
16.
Drignei
,
D.
,
Baseski
,
I.
,
Mourelatos
,
Z. P.
, and
Kosova
,
E.
,
2015
, “
A Random Process Metamodel Approach for Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011403
.
17.
Simek
,
K.
,
2003
, “
Properties of a Singular Value Decomposition Based Dynamical Model of Gene Expression Data
,”
Int. J. Appl. Math. Comput. Sci.
,
13
(
3
), pp.
337
345
.http://www.zbc.uz.zgora.pl/Content/2772/7simek.pdf
18.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
14th International Joint Conference on Artificial Intelligence
(
IJCAI
), Montreal, QC, Canada, Aug. 20–25, pp.
1137
1143
.http://dl.acm.org/citation.cfm?id=1643047
19.
Fay
,
T. H.
, and
Graham
,
S. D.
,
2003
, “
Coupled Spring Equations
,”
Int. J. Math. Educ. Sci. Technol.
,
34
(
1
), pp.
65
79
.
You do not currently have access to this content.