A current issue in metal-based additive manufacturing (AM) is achieving consistent, desired process outcomes in manufactured parts. When process outcomes such as strength, density, or precision need to meet certain specifications, changes in process variable selection can be made to meet these requirements. However, the changes required to achieve a better part performance may not be intuitive, particularly because process variable changes can simultaneously improve some outcomes while worsening others. There is great potential to design the additive manufacturing process, tailoring process variables based on user requirements for a given part. In this work, the tradeoffs between multiple process outcomes are formalized and the design problem is explored throughout the design space of process variables. Based on user input for each process outcome considered, P–V (power–velocity) process design charts are introduced, which map the process space and identify the best combination of process variables to achieve a user's desired outcome.

References

References
1.
Gockel
,
J.
, and
Beuth
,
J.
,
2013
, “
Understanding Ti-6Al-4V Microstructure Control in Additive Manufacturing Via Process Maps
,” Solid Freeform Fabrication: An Additive Manufacturing Conference (
SFF
), Austin, TX, Aug. 12–14, pp.
666
674
.https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-53-Gockel.pdf
2.
Spierings
,
A. B.
,
Herres
,
N.
,
Levy
,
G.
, and
Buchs
,
C.
,
2011
, “
Influence of the Particle Size Distribution on Surface Quality and Mechanical Properties in Additive Manufactured Stainless Steel Parts
,”
Rapid Prototyping J.
,
17
(
3
), pp.
195
202
.
3.
Peter Mercelis
,
J. K.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
12
(
5
), pp.
254
265
.
4.
Murr
,
L.
,
Martinez
,
E.
,
Medina
,
F.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Hernandez
,
J.
,
Amato
,
K. N.
,
Shindo
,
P. W.
, and
Wicker
,
R. B.
,
2012
, “
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
1
14
.
5.
Mertens
,
R.
,
Clijsters
,
S.
,
Kempen
,
K.
, and
Kruth
,
J.-P.
,
2014
, “
Optimization of Scan Strategies in Selective Laser Melting of Aluminum Parts With Downfacing Areas
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061012
.
6.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D. J.
,
2015
, “
Build Direction Effects on Microchannel Tolerance and Surface Roughness
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111411
.
7.
Ulu
,
E.
,
Korkmaz
,
E.
,
Yay
,
K.
,
Burak Ozdoganlar
,
O.
, and
Burak Kara
,
L.
,
2015
, “
Enhancing the Structural Performance of Additively Manufactured Objects Through Build Orientation Optimization
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111410
.
8.
Beuth
,
J.
,
Fox
,
J.
,
Gockel
,
J.
,
Montgomery
,
C.
,
Yang
,
R.
,
Qiao
,
H.
,
Reeseewatt
,
P.
,
Anvari
,
A.
,
Narra
,
S.
, and
Klingbeil
,
N.
,
2013
, “
Process Mapping for Qualification Across Multiple Direct Metal Additive Manufacturing Processes
,” Solid Freeform Fabrication: An Additive Manufacturing Conference (
SFF
), Austin, TX, Aug. 12–14, pp.
655
665
.https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-52-Beuth.pdf
9.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
10.
Gong
,
H.
,
Gu
,
H.
,
Dilip
,
J. J. S.
,
Pal
,
D.
,
Stucker
,
B.
,
Beuth
,
J.
,
Christiansen
,
D.
, and
Lewandowski
,
J. J.
,
2014
, “
Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-Alloyed Powder
,” Solid Freeform Fabrication: An Additive Manufacturing Conference (
SFF
), Austin, TX, Aug. 4–6, pp.
256
267
.https://sffsymposium.engr.utexas.edu/sites/default/files/2014-022-Gong.pdf
11.
Cheng
,
B.
, and
Chou
,
K.
,
2013
, “
Melt Pool Geometry Simulations for Powder-Based Electron Beam Additive Manufacturing
,” Solid Freeform Fabrication: An Additive Manufacturing Conference (
SFF
), Austin, TX, Aug. 12–14, pp.
644
654
.https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-51-Cheng.pdf
12.
Rubenchik
,
A.
,
Wu
,
S.
,
Mitchell
,
S.
,
Golosker
,
I.
,
LeBlanc
,
M.
, and
Peterson
,
N.
,
2015
, “
Direct Measurements of Temperature-Dependent Laser Absorptivity of Metal Powders
,”
Appl. Opt.
,
54
(
24
), pp.
7230
7233
.
13.
Soylemez
,
E.
,
Beuth
,
J.
, and
Taminger
,
K.
,
2010
, “
Controlling Melt Pool Dimensions Over a Wide Range of Material Deposition Rates in Electron Beam Additive Manufacturing
,” Solid Freeform Fabrication: An Additive Manufacturing Conference (
SFF
), Austin, TX, Aug. 9–11, pp.
571
582
.https://sffsymposium.engr.utexas.edu/Manuscripts/2010/2010-48-Soylemez.pdf
14.
Montgomery
,
C.
,
Beuth
,
J.
,
Sheridan
,
L.
, and
Klingbeil
,
N.
,
2015
, “
Process Mapping of Inconel 625 in Laser Powder Bed Additive Manufacturing
,”
Solid Freeform Fabrication Symposium: An Additive Manufacturing Conference
(
SFF
), Austin, TX, Aug. 10–12, pp.
1195
1204
.https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-97-Montgomery.pdf
15.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
.
16.
Shen
,
N.
, and
Chou
,
K.
,
2012
, “
Thermal Modeling of Electron Beam Additive Manufacturing Process: Powder Sintering Effects
,”
ASME
Paper No. MSEC2012-7253.
17.
Yasa
,
E.
, and
Kruth
,
J.
,
2012
, “
Microstructural Investigation of Selective Laser Melting 316L Stainless Steel Parts Exposed to Laser Re-Melting
,”
First CIRP Conference on Surface Integrity
(
CSI
), Bremen, Germany, Jan. 30–Feb. 1, pp.
389
395
.https://www.researchgate.net/publication/257723338_Microstructural_investigation_of_Selective_Laser_Melting_316L_stainless_steel_parts_exposed_to_laser_re-melting/fulltext/026791d60cf2946d9a21f27e/257723338_Microstructural_investigation_of_Selective_Laser_Melting_316L_stainless_steel_parts_exposed_to_laser_re-melting.pdf
18.
Steen
,
W. M.
, and
Mazumder
,
J.
,
2010
,
Laser Materials Processing
,
Springer
,
London
.
19.
Spierings
,
A. B.
,
Wegener
,
K.
, and
Levy
,
G.
,
2012
, “
Designing Material Properties Locally With Additive Manufacturing Technology SLM
,”
Solid Freeform Fabrication Symposium: An Additive Manufacturing Conference
(
SFF
), Austin, TX, Aug. 6–8, pp.
447
455
.https://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-34-Spierings.pdf
20.
Li
,
R.
,
Shi
,
Y.
,
Wang
,
Z.
,
Wang
,
L.
,
Liu
,
J.
, and
Jiang
,
W.
,
2010
, “
Densification Behavior of Gas and Water Atomized 316L Stainless Steel Powder During Selective Laser Melting
,”
Appl. Surf. Sci.
,
256
(
13
), pp.
4350
4356
.
21.
Cunningham
,
R.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Rollett
,
A. D.
, “
Synchrotron-Based X-Ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V
,”
JOM
,
69
(
3
), pp.
479
484
.
22.
Rai
,
R.
,
Elmer
,
J. W.
,
Palmer
,
T. A.
, and
DebRoy
,
T.
,
2007
, “
Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding of Tantalum, Ti–6Al–4V, 304L Stainless Steel and Vanadium
,”
J. Phys. D. Appl. Phys.
,
40
(
18
), pp.
5753
5766
.
23.
Francis
,
Z.
,
2017
, “
The Effects of Laser and Electron Beam Spot Size in Additive Manufacturing Processes
,”
Ph.D. dissertation
, Carnegie Mellon University, Pittsburgh, PA.http://repository.cmu.edu/dissertations/909/
24.
Guo
,
W.
, and
Kar
,
A.
,
1999
, “
Prediction of Microstructures in Laser Welding of Stainless Steel AISI 304
,”
J. Laser Appl.
,
11
(
4
), pp.
185
189
.
25.
de Lima
,
M. S. F.
, and
Sankare
,
S.
,
2014
, “
Microstructure and Mechanical Behavior of Laser Additive Manufactured AISI 316 Stainless Steel Stringers
,”
Mater. Des.
,
55
, pp.
526
532
.
26.
Smugeresky
,
J. E.
,
Keicher
,
D. M.
,
Romero
,
J. A.
,
Griffith
,
M. L.
, and
Harwell
,
L. D.
,
1997
, “
Laser Engineered Net Shaping (LENS™) Process: Optimization of Surface Finish and Microstructural Properties
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND-97-8652C
.https://www.osti.gov/scitech/servlets/purl/554828
27.
Yu
,
J.
,
Rombouts
,
M.
, and
Maes
,
G.
,
2013
, “
Cracking Behavior and Mechanical Properties of Austenitic Stainless Steel Parts Produced by Laser Metal Deposition
,”
Mater. Des.
,
45
, pp.
228
235
.
28.
Wang
,
Z.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2016
, “
Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304L Made by Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
110
, pp.
226
235
.
29.
Singh
,
K. K.
,
Sangal
,
S.
, and
Murty
,
G. S.
,
2002
, “
Hall–Petch Behaviour of 316L Austenitic Stainless Steel at Room Temperature
,”
Mater. Sci. Technol.
,
18
(
2
), pp.
165
172
.
30.
Whitehouse
,
D.
,
2012
,
Surfaces and Their Measurement
,
Butterworth-Heinemann
,
Boston, MA
.
31.
EOS
,
2014
, “
Material Data Sheet: EOS StainlessSteel 316L
,”
Electro Optical Systems GmBH
, Phoenixville, PA.https://cdn1.scrvt.com/eos/77d285f20ed6ae89/dd6850c010d3/EOSStainlessSteel316L.pdf
32.
Adam
,
G. A. O.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
33.
Shi
,
X.
,
Ma
,
S.
,
Liu
,
C.
,
Chen
,
C.
,
Wu
,
Q.
,
Chen
,
X.
, and
Lu
,
J.
,
2016
, “
Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V
,”
Materials
,
9
(
12
), p.
975
.
34.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.
You do not currently have access to this content.