The lattice structure is a type of cellular material with trusslike frames which can be optimized for specific loading conditions. The fabrication of its intricate architecture is restricted by traditional manufacturing technologies. However, additive manufacturing (AM) enables the fabrication of complex structures by aggregation of materials in a layer-by-layer fashion, which has unlocked the potential of lattice structures. In the last decade, lattice structures have received considerable research attention focusing on the design, simulation, and fabrication for AM techniques. And different modeling approaches have been proposed to predict the mechanical performance of lattice structures. This review introduces the aspects of modeling of lattice structures and the correlation between them, summarizes the existing modeling approaches for simulation, and discusses the strength and weakness in different simulation methods. This review also summarizes the characteristics of AM in manufacturing cellular materials and discusses their influence on the modeling of lattice structures.

References

1.
Merriam-Webster
,
2016
, “Lattice,” Merriam-Webster, Springfield, MA, accessed July 26, 2017, http://www.merriam-webster.com/dictionary/lattice
2.
Schaedler
,
T. A.
, and
Carter
,
W. B.
,
2016
, “
Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
187
210
.
3.
Evans
,
A. G.
,
Hutchinson
,
J.
, and
Ashby
,
M.
,
1998
, “
Multifunctionality of Cellular Metal Systems
,”
Prog. Mater. Sci.
,
43
(
3
), pp.
171
221
.
4.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
5.
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid Prototyping J.
,
22
(
3
), pp.
569
590
.
6.
Wang
,
H.
,
Chen
,
Y.
, and
Rosen
,
D. W.
,
2005
, “
A Hybrid Geometric Modeling Method for Large Scale Conformal Cellular Structures
,”
ASME
Paper No. DETC2005-85366.
7.
Wang
,
H.
, and
Rosen
,
D. W.
,
2002
, “
Parametric Modeling Method for Truss Structures
,”
ASME
Paper No. DETC2002/CIE-34495.
8.
Wang
,
H. V.
,
2005
, “
A Unit Cell Approach for Lightweight Structure and Compliant Mechanism
,”
Ph.D. dissertation
, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/handle/1853/7561
9.
Nguyen
,
J.
,
Park
,
S.
,
Rosen
,
D. W.
,
Folgar
,
L.
, and
Williams
,
J.
, 2012, “
Conformal Lattice Structure Design and Fabrication
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 7–9, pp. 138–161.https://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-10-Nguyen.pdf
10.
Queheillalt
,
D. T.
, and
Wadley
,
H. N.
,
2005
, “
Cellular Metal Lattices With Hollow Trusses
,”
Acta Mater.
,
53
(
2
), pp.
303
313
.
11.
Clough
,
E. C.
,
Ensberg
,
J.
,
Eckel
,
Z. C.
,
Ro
,
C. J.
, and
Schaedler
,
T. A.
,
2016
, “
Mechanical Performance of Hollow Tetrahedral Truss Cores
,”
Int. J. Solids Struct.
,
91
, pp.
115
126
.
12.
Schaedler
,
T. A.
,
Ro
,
C. J.
,
Sorensen
,
A. E.
,
Eckel
,
Z.
,
Yang
,
S. S.
,
Carter
,
W. B.
, and
Jacobsen
,
A. J.
,
2014
, “
Designing Metallic Microlattices for Energy Absorber Applications
,”
Adv. Eng. Mater.
,
16
(
3
), pp.
276
283
.
13.
Lu
,
T. J.
,
Valdevit
,
L.
, and
Evans
,
A. G.
,
2005
, “
Active Cooling by Metallic Sandwich Structures With Periodic Cores
,”
Prog. Mater. Sci.
,
50
(
7
), pp.
789
815
.
14.
Wadley
,
H. N.
, and
Queheillalt
,
D. T.
, 2007, “
Thermal Applications of Cellular Lattice Structures
,”
Mater. Sci. Forum
,
539–543
, pp.
242
247
.http://www.virginia.edu/ms/research/wadley/Documents/Publications/Thermal_Applications_of_Cellular_Lattice_Structures.pdf
15.
Valdevit
,
L.
,
Pantano
,
A.
,
Stone
,
H. A.
, and
Evans
,
A. G.
,
2006
, “
Optimal Active Cooling Performance of Metallic Sandwich Panels With Prismatic Cores
,”
Int. J. Heat Mass Transfer
,
49
(
21
), pp.
3819
3830
.
16.
Mota
,
C.
,
Puppi
,
D.
,
Chiellini
,
F.
, and
Chiellini
,
E.
,
2015
, “
Additive Manufacturing Techniques for the Production of Tissue Engineering Constructs
,”
J. Tissue Eng. Regener. Med.
,
9
(
3
), pp.
174
190
.
17.
ASTM
,
2012
, “
Standard Terminology for Additive Manufacturing Technologies
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM-F2792-12a
.https://www.astm.org/Standards/F2792.htm
18.
Melchels
,
F. P. W.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
(
24
), pp.
6121
6130
.
19.
Rezaei
,
R.
,
Ravari
,
M. K.
,
Badrossamay
,
M.
, and
Kadkhodaei
,
M.
,
2016
, “
Mechanical Characterization and Finite Element Modeling of Polylactic Acid BCC-Z Cellular Lattice Structures Fabricated by Fused Deposition Modeling
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
11
), pp.
1995
2004
.
20.
Naghieh
,
S.
,
Karamooz Ravari
,
M. R.
,
Badrossamay
,
M.
,
Foroozmehr
,
E.
, and
Kadkhodaei
,
M.
,
2016
, “
Numerical Investigation of the Mechanical Properties of the Additive Manufactured Bone Scaffolds Fabricated by FDM: The Effect of Layer Penetration and Post-Heating
,”
J. Mech. Behav. Biomed. Mater.
,
59
, pp.
241
250
.
21.
Tang
,
Y.
,
Zhou
,
Y.
,
Hoff
,
T.
,
Garon
,
M.
, and
Zhao
,
Y. F.
,
2016
, “
Elastic Modulus of 316 Stainless Steel Lattice Structure Fabricated Via Binder Jetting Process
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
648
656
.
22.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
32
38
.
23.
Cerardi
,
A.
,
Caneri
,
M.
,
Meneghello
,
R.
,
Concheri
,
G.
, and
Ricotta
,
M.
,
2013
, “
Mechanical Characterization of Polyamide Cellular Structures Fabricated Using Selective Laser Sintering Technologies
,”
Mater. Des.
,
46
, pp.
910
915
.
24.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Medina
,
F.
,
Lopez
,
M. I.
,
Martinez
,
E.
, and
Wicker
,
R. B.
,
2009
, “
Additive Layered Manufacturing of Reticulated Ti-6Al-4V Biomedical Mesh Structures by Electron Beam Melting
,”
25th Southern Biomedical Engineering Conference
, Miami, FL, May 15–17, pp.
23
28
.
25.
Parthasarathy
,
J.
,
Starly
,
B.
,
Raman
,
S.
, and
Christensen
,
A.
,
2010
, “
Mechanical Evaluation of Porous Titanium (Ti6Al4V) Structures With Electron Beam Melting (EBM)
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
3
), pp.
249
259
.
26.
Mun
,
J.
,
Yun
,
B. G.
,
Ju
,
J.
, and
Chang
,
B. M.
,
2015
, “
Indirect Additive Manufacturing Based Casting of a Periodic 3D Cellular Metal—Flow Simulation of Molten Aluminum Alloy
,”
J. Manuf. Processes
,
17
, pp.
28
40
.
27.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.
28.
Cheung
,
K. C.
, and
Gershenfeld
,
N.
,
2013
, “
Reversibly Assembled Cellular Composite Materials
,”
Science
,
341
(
6151
), pp.
1219
1221
.
29.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
4
(
5
), pp.
585
594
.
30.
Yang
,
L.
,
Harrysson
,
O.
,
Cormier
,
D.
,
West
,
H.
,
Gong
,
H.
, and
Stucker
,
B.
,
2015
, “
Additive Manufacturing of Metal Cellular Structures: Design and Fabrication
,”
JOM
,
67
(
3
), pp.
608
615
.
31.
Seepersad
,
C. C.
,
Shahan
,
D.
, and
Madhavan
,
K.
,
2007
, “
Multiscale Design for Solid Freeform Fabrication
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 6–8, pp. 416–427.https://sffsymposium.engr.utexas.edu/Manuscripts/2007/2007-35-Seepersad.pdf
32.
Tang
,
Y.
,
Dong
,
G.
,
Zhou
,
Q.
, and
Zhao
,
Y. F.
,
2017
, “
Lattice Structure Design and Optimization With Additive Manufacturing Constraints
,”
IEEE Trans. Autom. Sci. Eng.
,
PP
(
99
), pp.
1
17
.
33.
Gibson
,
L.
,
Ashby
,
M.
,
Schajer
,
G.
, and
Robertson
,
C.
, 1982, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. London, Ser. A
,
382
(1782), pp.
25
42
.
34.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. London, Ser. A
,
382
(1782), pp.
43
59
.
35.
Ashby
,
M. F.
, and
Medalist
,
R. F. M.
,
1983
, “
The Mechanical Properties of Cellular Solids
,”
Metall. Trans. A
,
14
(
9
), pp.
1755
1769
.
36.
Gibson
,
L. J.
,
2005
, “
Biomechanics of Cellular Solids
,”
J. Biomech.
,
38
(
3
), pp.
377
399
.
37.
Labeas
,
G. N.
, and
Sunaric
,
M. M.
,
2010
, “
Investigation on the Static Response and Failure Process of Metallic Open Lattice Cellular Structures
,”
Strain
,
46
(
2
), pp.
195
204
.
38.
Yang
,
L.
,
Cormier
,
D.
,
West
,
H.
,
Harrysson
,
O.
, and
Knowlson
,
K.
,
2012
, “
Non-Stochastic Ti-6Al-4V Foam Structures With Negative Poisson's Ratio
,”
Mater. Sci. Eng. A
,
558
, pp.
579
585
.
39.
Alsalla
,
H.
,
Hao
,
L.
, and
Smith
,
C.
,
2016
, “
Fracture Toughness and Tensile Strength of 316L Stainless Steel Cellular Lattice Structures Manufactured Using the Selective Laser Melting Technique
,”
Mater. Sci. Eng.: A
,
669
, pp.
1
6
.
40.
Winter
,
R. E.
,
Cotton
,
M.
,
Harris
,
E. J.
,
Maw
,
J. R.
,
Chapman
,
D. J.
,
Eakins
,
D. E.
, and
McShane
,
G.
,
2014
, “
Plate-Impact Loading of Cellular Structures Formed by Selective Laser Melting
,”
Modell. Simul. Mater. Sci. Eng.
,
22
(
2
), p. 025021.
41.
Salehian
,
A.
, and
Inman
,
D. J.
,
2008
, “
Dynamic Analysis of a Lattice Structure by Homogenization: Experimental Validation
,”
J. Sound Vib.
,
316
(
1–5
), pp.
180
197
.
42.
Jamshidinia
,
M.
,
Wang
,
L.
,
Tong
,
W.
,
Ajlouni
,
R.
, and
Kovacevic
,
R.
,
2015
, “
Fatigue Properties of a Dental Implant Produced by Electron Beam Melting (EBM)
,”
J. Mater. Process. Technol.
,
226
, pp.
255
263
.
43.
Luxner
,
M. H.
,
Stampfl
,
J.
, and
Pettermann
,
H. E.
,
2005
, “
Finite Element Modeling Concepts and Linear Analyses of 3D Regular Open Cell Structures
,”
J. Mater. Sci.
,
40
(
22
), pp.
5859
5866
.
44.
Williams
,
J. M.
,
Adewunmi
,
A.
,
Schek
,
R. M.
,
Flanagan
,
C. L.
,
Krebsbach
,
P. H.
,
Feinberg
,
S. E.
,
Hollister
,
S. J.
, and
Das
,
S.
,
2005
, “
Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated Via Selective Laser Sintering
,”
Biomaterials
,
26
(
23
), pp.
4817
4827
.
45.
Johnston
,
S. R.
,
Reed
,
M.
,
Wang
,
H. V.
, and
Rosen
,
D. W.
,
2006
, “
Analysis of Mesostructure Unit Cells Comprised of Octet-Truss Structures
,”
17th Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 14–16, pp.
421
432
.https://sffsymposium.engr.utexas.edu/Manuscripts/2006/2006-38-Johnston.pdf
46.
Ravari
,
M. R. K.
,
Kadkhodaei
,
M.
,
Badrossamay
,
M.
, and
Rezaei
,
R.
,
2014
, “
Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling
,”
Int. J. Mech. Sci.
,
88
, pp.
154
161
.
47.
Cansizoglu
,
O.
,
Harrysson
,
O.
,
Cormier
,
D.
,
West
,
H.
, and
Mahale
,
T.
,
2008
, “
Properties of Ti–6Al–4V Non-Stochastic Lattice Structures Fabricated Via Electron Beam Melting
,”
Mater. Sci. Eng. A
,
492
(
1–2
), pp.
468
474
.
48.
de Formanoir
,
C. C. C.
,
2016
, “
Improving the Mechanical Efficiency of Electron Beam Melted Titanium Lattice Structures by Chemical Etching
,”
Addit. Manuf.
,
11
, pp.
71
76
.
49.
Campoli
,
G.
,
Borleffs
,
M. S.
,
Amin Yavari
,
S.
,
Wauthle
,
R.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2013
, “
Mechanical Properties of Open-Cell Metallic Biomaterials Manufactured Using Additive Manufacturing
,”
Mater. Des.
,
49
, pp.
957
965
.
50.
Smith
,
M.
,
Guan
,
Z.
, and
Cantwell
,
W. J.
,
2013
, “
Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using the Selective Laser Melting Technique
,”
Int. J. Mech. Sci.
,
67
, pp.
28
41
.
51.
Gümrük
,
R.
, and
Mines
,
R. A. W.
,
2013
, “
Compressive Behaviour of Stainless Steel Micro-Lattice Structures
,”
Int. J. Mech. Sci.
,
68
, pp.
125
139
.
52.
Malek
,
N. M. S. A.
,
Mohamed
,
S. R.
,
Ghani
,
S. A. C.
, and
Harun
,
W. S. W.
,
2015
, “
Critical Evaluation on Structural Stiffness of Porous Cellular Structure of Cobalt Chromium Alloy
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
100
, p.
012019
.
53.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
,
Bubb
,
S. L.
,
Young
,
P.
, and
Raymont
,
D.
,
2014
, “
Evaluation of Light-Weight AlSi10Mg Periodic Cellular Lattice Structures Fabricated Via Direct Metal Laser Sintering
,”
J. Mater. Process. Technol.
,
214
(
4
), pp.
856
864
.
54.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Young
,
P.
,
2015
, “
Ti–6Al–4V Triply Periodic Minimal Surface Structures for Bone Implants Fabricated Via Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
51
, pp.
61
73
.
55.
Arabnejad
,
S.
,
Burnett Johnston
,
R.
,
Pura
,
J. A.
,
Singh
,
B.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2016
, “
High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints
,”
Acta Biomater.
,
30
, pp.
345
356
.
56.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
,
Young
,
P.
,
Huang
,
J.
, and
Zhu
,
W.
,
2015
, “
Microstructure and Mechanical Properties of Aluminium Alloy Cellular Lattice Structures Manufactured by Direct Metal Laser Sintering
,”
Mater. Sci. Eng. A
,
628
, pp.
238
246
.
57.
Suard
,
M.
,
Lhuissier
,
P.
,
Dendievel
,
R.
,
Blandin
,
J. J.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2014
, “
Towards Stiffness Prediction of Cellular Structures Made by Electron Beam Melting (EBM)
,”
Powder Metall.
,
57
(
3
), pp.
190
195
.
58.
Qiu
,
C.
,
Yue
,
S.
,
Adkins
,
N. J. E.
,
Ward
,
M.
,
Hassanin
,
H.
,
Lee
,
P. D.
,
Withers
,
P. J.
, and
Attallah
,
M. M.
,
2015
, “
Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
628
, pp.
188
197
.
59.
Hernández-Nava
,
E.
,
Smith
,
C. J.
,
Derguti
,
F.
,
Tammas-Williams
,
S.
,
Leonard
,
F.
,
Withers
,
P. J.
,
Todd
,
I.
, and
Goodall
,
R.
,
2016
, “
The Effect of Defects on the Mechanical Response of Ti-6Al-4V Cubic Lattice Structures Fabricated by Electron Beam Melting
,”
Acta Mater.
,
108
, pp.
279
292
.
60.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization: I—Homogenization Theory for Media With Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
.
61.
Bensoussan
,
A.
,
Lions
,
J.-L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic Analysis for Periodic Structures
,
American Mathematical Society
,
Providence, RI
.
62.
Cioranescu
,
D.
, and
Paulin
,
J. S. J.
,
1979
, “
Homogenization in Open Sets With Holes
,”
J. Math. Anal. Appl.
,
71
(
2
), pp.
590
607
.
63.
Ptochos
,
E.
, and
Labeas
,
G.
,
2012
, “
Shear Modulus Determination of Cuboid Metallic Open-Lattice Cellular Structures by Analytical, Numerical and Homogenisation Methods
,”
Strain
,
48
(
5
), pp.
415
429
.
64.
Ptochos
,
E.
, and
Labeas
,
G.
,
2012
, “
Elastic Modulus and Poisson's Ratio Determination of Micro-Lattice Cellular Structures by Analytical, Numerical and Homogenisation Methods
,”
J. Sandwich Struct. Mater.
,
14
(
5
), pp.
597
626
.
65.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
66.
Rabczuk
,
T.
,
Kim
,
J.
,
Samaniego
,
E.
, and
Belytschko
,
T.
,
2004
, “
Homogenization of Sandwich Structures
,”
Int. J. Numer. Methods Eng.
,
61
(
7
), pp.
1009
1027
.
67.
Florence
,
C.
, and
Sab
,
K.
,
2005
, “
Overall Ultimate Yield Surface of Periodic Tetrakaidecahedral Lattice With Non-Symmetric Material Distribution
,”
J. Mater. Sci.
,
40
(
22
), pp.
5883
5892
.
68.
Florence
,
C.
, and
Sab
,
K.
,
2006
, “
A Rigorous Homogenization Method for the Determination of the Overall Ultimate Strength of Periodic Discrete Media and an Application to General Hexagonal Lattices of Beams
,”
Eur. J. Mech., A
,
25
(
1
), pp.
72
97
.
69.
Arabnejad
,
S.
, and
Pasini
,
D.
,
2013
, “
Mechanical Properties of Lattice Materials Via Asymptotic Homogenization and Comparison With Alternative Homogenization Methods
,”
Int. J. Mech. Sci.
,
77
, pp.
249
262
.
70.
Tollenaere
,
H.
, and
Caillerie
,
D.
,
1998
, “
Continuous Modeling of Lattice Structures by Homogenization
,”
Adv. Eng. Software
,
29
(
7
), pp.
699
705
.
71.
Caillerie
,
D.
,
Mourad
,
A.
, and
Raoult
,
A.
,
2006
, “
Discrete Homogenization in Graphene Sheet Modeling
,”
J. Elasticity
,
84
(
1
), pp.
33
68
.
72.
Dos Reis
,
F.
, and
Ganghoffer
,
J.
,
2010
, “
Discrete Homogenization of Architectured Materials: Implementation of the Method in a Simulation Tool for the Systematic Prediction of Their Effective Elastic Properties
,”
Tech. Mech.
,
30
(
1–3
), pp.
85
109
.http://www.ovgu.de/ifme/zeitschrift_tm/2010_Heft1_3/07_DosReis.pdf
73.
Dos Reis
,
F.
, and
Ganghoffer
,
J. F.
,
2012
, “
Equivalent Mechanical Properties of Auxetic Lattices From Discrete Homogenization
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
314
321
.
74.
Dell'Isola
,
F.
,
Giorgio
,
I.
,
Pawlikowski
,
M.
, and
Rizzi
,
N. L.
,
2016
, “
Large Deformations of Planar Extensible Beams and Pantographic Lattices: Heuristic Homogenization, Experimental and Numerical Examples of Equilibrium
,”
Proc. R. Soc. A
,
472
(
2185
), p. 20150790.
75.
Park
,
S.
, and
Rosen
,
D. W.
,
2016
, “
Homogenization of Mechanical Properties for Additively Manufactured Periodic Lattice Structures Considering Joint Stiffening Effects
,”
ASME
Paper No. DETC2016-59730.
76.
Assidi
,
M.
,
Dos Reis
,
F.
, and
Ganghoffer
,
J. F.
,
2011
, “
Equivalent Mechanical Properties of Biological Membranes From Lattice Homogenization
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1833
1845
.
77.
Goda
,
I.
,
Assidi
,
M.
,
Belouettar
,
S.
, and
Ganghoffer
,
J. F.
,
2012
, “
A Micropolar Anisotropic Constitutive Model of Cancellous Bone From Discrete Homogenization
,”
J. Mech. Behav. Biomed. Mater.
,
16
(
1
), pp.
87
108
.
78.
Goda
,
I.
,
Assidi
,
M.
, and
Ganghoffer
,
J. F.
,
2014
, “
A 3D Elastic Micropolar Model of Vertebral Trabecular Bone From Lattice Homogenization of the Bone Microstructure
,”
Biomech. Model. Mechanobiol.
,
13
(
1
), pp.
53
83
.
79.
Goda
,
I.
,
Dos Reis
,
F.
, and
Ganghoffer
,
J. F.
,
2016
, “
Limit Analysis of Lattices Based on the Asymptotic Homogenization Method and Prediction of Size Effects in Bone Plastic Collapse
,”
Advanced Structured Materials
, Springer, Cham, Switzerland, pp.
179
211
.
80.
Hutchinson
,
R.
, and
Fleck
,
N.
,
2006
, “
The Structural Performance of the Periodic Truss
,”
J. Mech. Phys. Solids
,
54
(
4
), pp.
756
782
.
81.
Vigliotti
,
A.
, and
Pasini
,
D.
,
2012
, “
Linear Multiscale Analysis and Finite Element Validation of Stretching and Bending Dominated Lattice Materials
,”
Mech. Mater.
,
46
, pp.
57
68
.
82.
Vigliotti
,
A.
, and
Pasini
,
D.
,
2012
, “
Stiffness and Strength of Tridimensional Periodic Lattices
,”
Comput. Methods Appl. Mech. Eng.
,
229–232
, pp.
27
43
.
83.
Vigliotti
,
A.
,
Deshpande
, V
. S.
, and
Pasini
,
D.
,
2014
, “
Non Linear Constitutive Models for Lattice Materials
,”
J. Mech. Phys. Solids
,
64
, pp.
44
60
.
84.
Park
,
S. I.
,
Rosen
,
D. W.
,
Choi
,
S. K.
, and
Duty
,
C. E.
,
2014
, “
Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
1–4
, pp.
12
23
.
85.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
, pp.
488
495
.
86.
Dirrenberger
,
J.
,
Forest
,
S.
,
Jeulin
,
D.
, and
Colin
,
C.
,
2011
, “
Homogenization of Periodic Auxetic Materials
,”
Procedia Eng.
,
10
, pp.
1847
1852
.
87.
van Dijk
,
N. P.
,
2016
, “
Formulation and Implementation of Stress-Driven and/or Strain-Driven Computational Homogenization for Finite Strain
,”
Int. J. Numer. Methods Eng.
,
107
(
12
), pp.
1009
1028
.
88.
Schwerdtfeger
,
J.
,
Schury
,
F.
,
Stingl
,
M.
,
Wein
,
F.
,
Singer
,
R. F.
, and
Körner
,
C.
,
2012
, “
Mechanical Characterisation of a Periodic Auxetic Structure Produced by SEBM
,”
Phys. Status Solidi B
,
249
(
7
), pp.
1347
1352
.
89.
Zhu
,
H. X.
,
Hobdell
,
J. R.
, and
Windle
,
A. H.
,
2000
, “
Effects of Cell Irregularity on the Elastic Properties of Open-Cell Foams
,”
Acta Mater.
,
48
(
20
), pp.
4893
4900
.
90.
Zhu
,
H. X.
,
Hobdell
,
J. R.
, and
Windle
,
A. H.
,
2001
, “
Effects of Cell Irregularity on the Elastic Properties of 2D Voronoi Honeycombs
,”
J. Mech. Phys. Solids
,
49
(
4
), pp.
857
870
.
91.
Zhou
,
J.
,
Shrotriya
,
P.
, and
Soboyejo
,
W. O.
,
2004
, “
On the Deformation of Aluminum Lattice Block Structures: From Struts to Structures
,”
Mech. Mater.
,
36
(
8
), pp.
723
737
.
92.
Gan
,
Y. X.
,
Chen
,
C.
, and
Shen
,
Y. P.
,
2005
, “
Three-Dimensional Modeling of the Mechanical Property of Linearly Elastic Open Cell Foams
,”
Int. J. Solids Struct.
,
42
(
26
), pp.
6628
6642
.
93.
Cuan-Urquizo
,
E.
,
Yang
,
S.
, and
Bhaskar
,
A.
,
2015
, “
Mechanical Characterisation of Additively Manufactured Material Having Lattice Microstructure
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
74
, p.
012004
.
94.
Alkhader
,
M.
, and
Vural
,
M.
,
2007
, “
Effect of Microstructure in Cellular Solids: Bending vs. Stretch Dominated Topologies
,”
The Third International Conference on Recent Advances in Space Technologies
(
RAST
), Istanbul, Turkey, June 14–16, pp.
136
143
.
95.
Alkhader
,
M.
, and
Vural
,
M.
,
2008
, “
Mechanical Response of Cellular Solids: Role of Cellular Topology and Microstructural Irregularity
,”
Int. J. Eng. Sci.
,
46
(
10
), pp.
1035
1051
.
96.
Ahmadi
,
S. M.
,
Campoli
,
G.
,
Amin Yavari
,
S.
,
Sajadi
,
B.
,
Wauthle
,
R.
,
Schrooten
,
J.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2014
, “
Mechanical Behavior of Regular Open-Cell Porous Biomaterials Made of Diamond Lattice Unit Cells
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
106
115
.
97.
Aremu
,
A. O.
,
Maskery
, I
. A.
,
Tuck
,
C. J.
,
Ashcroft
,
I. A.
,
Wildman
,
R. D.
, and
Hague
,
R. J. M.
,
2016
,
Effects of Net and Solid Skins on Self-Supporting Lattice Structures
,
Springer
,
Cham, Switzerland
, pp.
83
89
.
98.
Chantarapanich
,
N.
,
Puttawibul
,
P.
,
Sucharitpwatskul
,
S.
,
Jeamwatthanachai
,
P.
,
Inglam
,
S.
, and
Sitthiseripratip
,
K.
,
2012
, “
Scaffold Library for Tissue Engineering: A Geometric Evaluation
,”
Comput. Math. Methods Med.
,
2012
, p.
407805
.
99.
Zargarian
,
A.
,
Esfahanian
,
M.
,
Kadkhodapour
,
J.
, and
Ziaei-Rad
,
S.
,
2014
, “
Effect of Solid Distribution on Elastic Properties of Open-Cell Cellular Solids Using Numerical and Experimental Methods
,”
J. Mech. Behav. Biomed. Mater.
,
37
, pp.
264
273
.
100.
Ullah
,
I.
,
Elambasseril
,
J.
,
Brandt
,
M.
, and
Feih
,
S.
,
2014
, “
Performance of Bio-Inspired Kagome Truss Core Structures Under Compression and Shear Loading
,”
Compos. Struct.
,
118
(
1
), pp.
294
302
.
101.
Salonitis
,
K.
,
Chantzis
,
D.
, and
Kappatos
,
V.
,
2017
, “
A Hybrid Finite Element Analysis and Evolutionary Computation Method for the Design of Lightweight Lattice Components With Optimized Strut Diameter
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9–12
), pp.
2689
2701
.
102.
Huo
,
J.
,
Dérand
,
P.
,
Rännar
,
L. E.
,
Hirsch
,
J. M.
, and
Gamstedt
,
E. K.
,
2015
, “
Failure Location Prediction by Finite Element Analysis for an Additive Manufactured Mandible Implant
,”
Med. Eng. Phys.
,
37
(
9
), pp.
862
869
.
103.
Wettergreen
,
M. A.
,
Bucklen
,
B. S.
,
Starly
,
B.
,
Yuksel
,
E.
,
Sun
,
W.
, and
Liebschner
,
M. A. K.
,
2005
, “
Creation of a Unit Block Library of Architectures for Use in Assembled Scaffold Engineering
,”
Comput. Aided Des.
,
37
(
11
), pp.
1141
1149
.
104.
Cahill
,
S.
,
Lohfeld
,
S.
, and
McHugh
,
P.
,
2009
, “
Finite Element Predictions Compared to Experimental Results for the Effective Modulus of Bone Tissue Engineering Scaffolds Fabricated by Selective Laser Sintering
,”
J. Mater. Sci.: Mater. Med.
,
20
(
6
), pp.
1255
1262
.
105.
Hedayati
,
R.
,
Sadighi
,
M.
,
Mohammadi-Aghdam
,
M.
, and
Zadpoor
,
A. A.
,
2016
, “
Mechanical Properties of Regular Porous Biomaterials Made From Truncated Cube Repeating Unit Cells: Analytical Solutions and Computational Models
,”
Mater. Sci. Eng. C
,
60
, pp.
163
183
.
106.
Hedayati
,
R.
,
Sadighi
,
M.
,
Mohammadi-Aghdam
,
M.
, and
Zadpoor
,
A. A.
,
2016
, “
Mechanics of Additively Manufactured Porous Biomaterials Based on the Rhombicuboctahedron Unit Cell
,”
J. Mech. Behav. Biomed. Mater.
,
53
, pp.
272
294
.
107.
Coelho
,
P. G.
,
Hollister
,
S. J.
,
Flanagan
,
C. L.
, and
Fernandes
,
P. R.
,
2015
, “
Bioresorbable Scaffolds for Bone Tissue Engineering: Optimal Design, Fabrication, Mechanical Testing and Scale-Size Effects Analysis
,”
Med. Eng. Phys.
,
37
(
3
), pp.
287
296
.
108.
Yang
,
L.
,
Harrysson
,
O.
,
West
,
H.
, and
Cormier
,
D.
,
2015
, “
Mechanical Properties of 3D Re-Entrant Honeycomb Auxetic Structures Realized Via Additive Manufacturing
,”
Int. J. Solids Struct.
,
69–70
, pp.
475
490
.
109.
Zargarian
,
A.
,
Esfahanian
,
M.
,
Kadkhodapour
,
J.
, and
Ziaei-Rad
,
S.
,
2016
, “
Numerical Simulation of the Fatigue Behavior of Additive Manufactured Titanium Porous Lattice Structures
,”
Mater. Sci. Eng. C
,
60
, pp.
339
347
.
110.
Sercombe
,
T. B.
,
Xu
,
X.
,
Challis
, V
. J.
,
Green
,
R.
,
Yue
,
S.
,
Zhang
,
Z.
, and
Lee
,
P. D.
,
2015
, “
Failure Modes in High Strength and Stiffness to Weight Scaffolds Produced by Selective Laser Melting
,”
Mater. Des.
,
67
, pp.
501
508
.
111.
Park
,
S. I.
, and
Rosen
,
D. W.
,
2016
, “
Quantifying Effects of Material Extrusion Additive Manufacturing Process on Mechanical Properties of Lattice Structures Using As-Fabricated Voxel Modeling
,”
Addit. Manuf.
,
12
(Pt. B), pp.
265
273
.
112.
Sachdeva
,
A.
,
Singh
,
S.
, and
Sharma
, V
. S.
,
2013
, “
Investigating Surface Roughness of Parts Produced by SLS Process
,”
Int. J. Adv. Manuf. Technol.
,
64
(
9–12
), pp.
1505
1516
.
113.
Pupo
,
Y.
,
Monroy
,
K. P.
, and
Ciurana
,
J.
,
2015
, “
Influence of Process Parameters on Surface Quality of CoCrMo Produced by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
80
(
5–8
), pp.
985
995
.
114.
Everhart
,
W.
,
Sawyer
,
E.
,
Neidt
,
T.
,
Dinardo
,
J.
, and
Brown
,
B.
,
2016
, “
The Effect of Surface Finish on Tensile Behavior of Additively Manufactured Tensile Bars
,”
J. Mater. Sci.
,
51
(
8
), pp.
3836
3845
.
115.
Shanjani
,
Y.
,
Hu
,
Y.
,
Pilliar
,
R. M.
, and
Toyserkani
,
E.
,
2011
, “
Mechanical Characteristics of Solid-Freeform-Fabricated Porous Calcium Polyphosphate Structures With Oriented Stacked Layers
,”
Acta Biomater.
,
7
(
4
), pp.
1788
1796
.
116.
Ladani
,
L.
,
Razmi
,
J.
, and
Choudhury
,
S. F.
,
2014
, “
Mechanical Anisotropy and Strain Rate Dependency Behavior of Ti6Al4V Produced Using E-Beam Additive Fabrication
,”
ASME J. Eng. Mater. Technol.
,
136
(
3
), p.
031006
.
117.
Sridharan
,
N.
,
Gussev
,
M.
,
Seibert
,
R.
,
Parish
,
C.
,
Norfolk
,
M.
,
Terrani
,
K.
, and
Babu
,
S. S.
,
2016
, “
Rationalization of Anisotropic Mechanical Properties of Al-6061 Fabricated Using Ultrasonic Additive Manufacturing
,”
Acta Mater.
,
117
, pp.
228
237
.
118.
Ahn
,
S. H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
.
119.
Hambali
,
R. H.
,
Smith
,
P.
, and
Rennie
,
A. E. W.
,
2012
, “
Determination of the Effect of Part Orientation to the Strength Value on Additive Manufacturing FDM for End-Use Parts by Physical Testing and Validation Via Three-Dimensional Finite Element Analysis
,”
Int. J. Mater. Eng. Innovation
,
3
(
3–4
), pp.
269
281
.
120.
Ogden
,
S.
, and
Kessler
,
S.
, 2014, “
Anisotropic Finite Element Modeling of the Fused Deposition Modeling Process
,”
TMS Annual Meeting
, San Diego, CA, Feb. 16–20, pp.
235
246
.http://www.programmaster.org/PM/PM.nsf/ApprovedAbstracts/F56F01304DC5E2D685257BA40083769C?OpenDocument
121.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
, pp.
309
320
.
122.
Åkerfeldt
,
P.
,
Antti
,
M. L.
, and
Pederson
,
R.
,
2016
, “
Influence of Microstructure on Mechanical Properties of Laser Metal Wire-Deposited Ti-6Al-4V
,”
Mater. Sci. Eng. A
,
674
, pp.
428
437
.
123.
Zhang
,
Q.
,
Chen
,
J.
,
Zhao
,
Z.
,
Tan
,
H.
,
Lin
,
X.
, and
Huang
,
W.
,
2016
, “
Microstructure and Anisotropic Tensile Behavior of Laser Additive Manufactured TC21 Titanium Alloy
,”
Mater. Sci. Eng. A
,
673
, pp.
204
212
.
124.
Wauthle
,
R.
,
Vrancken
,
B.
,
Beynaerts
,
B.
,
Jorissen
,
K.
,
Schrooten
,
J.
,
Kruth
,
J. P.
, and
Van Humbeeck
,
J.
,
2015
, “
Effects of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V Lattice Structures
,”
Addit. Manuf.
,
5
, pp.
77
84
.
125.
Reinhart
,
G.
,
Teufelhart
,
S.
, and
Riss
,
F.
,
2012
, “
Investigation of the Geometry-Dependent Anisotropic Material Behavior of Filigree Struts in ALM-Produced Lattice Structures
,”
Phys. Procedia
,
39
, pp.
471
479
.
126.
List
,
F. A.
,
Dehoff
,
R. R.
,
Lowe
,
L. E.
, and
Sames
,
W. J.
,
2014
, “
Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing
,”
Mater. Sci. Eng. A
,
615
, pp.
191
197
.
127.
Galeta
,
T.
,
Raos
,
P.
, and
Somolanji
,
M.
,
2012
, “
Impact of Structure and Building Orientation on Strength of 3D Printed Models
,”
KGK
,
65
(
10
), pp.
36
42
.https://www.tib.eu/de/suchen/id/BLSE%3ARN320332459/Impact-of-Structure-and-Building-Orientation-on/
128.
Castilho
,
M.
,
Dias
,
M.
,
Gbureck
,
U.
,
Groll
,
J.
,
Fernandes
,
P.
,
Pires
,
I.
,
Gouveia
,
B.
,
Rodrigues
,
J.
, and
Vorndran
,
E.
,
2013
, “
Fabrication of Computationally Designed Scaffolds by Low Temperature 3D Printing
,”
Biofabrication
,
5
(
3
), p.
035012
.
129.
Zhang
,
P.
, and
To
,
A. C.
,
2016
, “
Transversely Isotropic Hyperelastic-Viscoplastic Model for Glassy Polymers With Application to Additive Manufactured Photopolymers
,”
Int. J. Plast.
,
80
, pp.
56
74
.
You do not currently have access to this content.