The force and/or motion transmissibility and the analyticity of inverse kinematics for a thumb mechanism depend on thumb configuration. This paper presents a general framework for the thumb configuration and performance evaluation in the design of dexterous robotic hand. The thumb configuration is described by the functional analysis of human thumb, and the thumb of robotic hand is generalized into 15 configurations. A performance evaluation method is proposed based on kinetostatic and dynamic dexterity as well as workspace. The kinetostatic dexterity is based on a Jacobian matrix condition number (JMCN). A dynamic dexterity measure is presented via acceleration analysis, which keeps a clear geometric meaning. The proposed method is applied to evaluate the performance of three examples, which cover thumb configurations of most existing dexterous hands. Performance evaluation results demonstrate the effectiveness of the proposed method. Using these results and the proposed performance evaluation method, meaningful design principles are presented to guide the design of the thumb configuration.

References

References
1.
Diftler
,
M. A.
,
Mehling
,
J. S.
,
Abdallah
,
M. E.
,
Radford
,
N. A.
,
Bridgwater
,
L. B.
,
Sanders
,
A. M.
,
Askew
,
R. S.
,
Linn
,
D. M.
,
Yamokoski
,
J. D.
,
Permenter
,
F. A.
,
Hargrave
,
B. K.
,
Platt
,
R.
,
Savely
,
R. T.
, and
Ambrose
,
R. O.
,
2011
, “
Robonaut 2: The First Humanoid Robot in Space
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
2178
2183
.
2.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.
3.
Grebenstein
,
M.
,
Chalon
,
M.
,
Hirzinger
,
G.
, and
Siegwart
,
R.
,
2010
, “
Antagonistically Driven Finger Design for the Anthropomorphic DLR Hand Arm System
,”
10th IEEE-RAS International Conference on Humanoid Robots
(
Humanoids
), Nashville, TN, Dec. 6–8, pp.
609
616
.
4.
Chalon
,
M.
,
Grebenstein
,
M.
,
Wimbock
,
T.
, and
Hirzinger
,
G.
,
2010
, “
The Thumb: Guidelines for a Robotic Design
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct 18–22, pp.
5886
5893
.
5.
Bridgwater
,
L. B.
,
Ihrke
,
C. A.
,
Diftler
,
M. A.
,
Abdallah
,
M. E.
,
Radford
,
N. A.
,
Rogers
,
J. M.
,
Yayathi
,
S.
,
Askew
,
R. S.
, and
Linn
,
D. M.
,
2012
, “
The Robonaut 2 Hand-Designed To Do Work With Tools
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
3425
3430
.
6.
Peerdeman
,
B.
,
Valori
,
M.
,
Brouwer
,
D.
,
Hekman
,
E.
,
Misra
,
S.
, and
Stramigioli
,
S.
,
2014
, “
UT Hand I: A Lock-Based Underactuated Hand Prosthesis
,”
Mech. Mach. Theory
,
78
, pp.
307
323
.
7.
Kapandji
,
I. A.
,
2007
,
The Physiology of the Joints: Upper Limb
,
6th ed.
, Vol.
1
,
Churchill Livingstone
,
London
.
8.
Wang
,
H.
,
Fan
,
S.
, and
Liu
,
H.
,
2012
, “
An Anthropomorphic Design Guideline for the Thumb of the Dexterous Hand
,”
International Conference on Mechatronics and Automation
(
ICMA
), Chengdu, China, Aug. 5–8, pp.
777
782
.
9.
Bullock
, I
. M.
,
Borràs
,
J.
, and
Dollar
,
A. M.
,
2012
, “
Assessing Assumptions in Kinematic Hand Models: A Review
,”
4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Rome, Italy, June 24–27, pp.
139
146
.
10.
Chang
,
L. Y.
, and
Pollard
,
N. S.
,
2007
, “
Constrained Least-Squares Optimization for Robust Estimation of Center of Rotation
,”
J. Biomech.
,
40
(
6
), pp.
1392
1400
.
11.
Chang
,
L. Y.
, and
Pollard
,
N. S.
,
2008
, “
Method for Determining Kinematic Parameters of the in vivo Thumb Carpometacarpal Joint
,”
IEEE Trans. Biomed. Eng.
,
55
(
7
), pp.
1897
1906
.
12.
Rezzoug
,
N.
, and
Gorce
,
P.
,
2008
, “
Prediction of Fingers Posture Using Artificial Neural Networks
,”
J. Biomech.
,
41
(
12
), pp.
2743
2749
.
13.
Santos
, V
. J.
, and
Valero-Cuevas
,
F. J.
,
2006
, “
Reported Anatomical Variability Naturally Leads to Multimodal Distributions of Denavit-Hartenberg Parameters for the Human Thumb
,”
IEEE Trans. Biomed. Eng.
,
53
(
2
), pp.
155
163
.
14.
Wu
,
J. Z.
,
Dong
,
R. G.
,
McDowell
,
T. W.
, and
Welcome
,
D. E.
,
2009
, “
Modeling the Finger Joint Moments in a Hand at the Maximal Isometric Grip: The Effects of Friction
,”
Med. Eng. Phys.
,
31
(
10
), pp.
1214
1218
.
15.
Valero-Cuevas
,
F. J.
,
Johanson
,
M. E.
, and
Towles
,
J. D.
,
2003
, “
Towards a Realistic Biomechanical Model of the Thumb: The Choice of Kinematic Description May Be More Critical Than the Solution Method or the Variability/Uncertainty of Musculoskeletal Parameters
,”
J. Biomech.
,
36
(
7
), pp.
1019
1030
.
16.
Cui
,
L.
,
Cupcic
,
U.
, and
Dai
,
J. S.
,
2014
, “
An Optimization Approach to Teleoperation of the Thumb of a Humanoid Robot Hand: Kinematic Mapping and Calibration
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091005
.
17.
Haidacher
,
S.
,
Butterfass
,
J.
,
Fischer
,
M.
,
Grebenstein
,
M.
,
Jöhl
,
K.
,
Kunze
,
K.
,
Nickl
,
M.
,
Seitz
,
N.
, and
Hirzinger
,
G.
,
2003
, “
DLR Hand II: Hard-and Software Architecture for Information Processing
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Taipei, Taiwan, Sept. 14–19, pp.
684
689
.
18.
Butterfass
,
J.
,
Grebenstein
,
M.
,
Liu
,
H.
, and
Hirzinger
,
G.
,
2001
, “
DLR-Hand II: Next Generation of a Dextrous Robot Hand
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
IEEE
, Seoul, Korea, May 21–26, pp.
109
114
.
19.
Chalon
,
M.
,
Wedler
,
A.
,
Baumann
,
A.
,
Bertleff
,
W.
,
Beyer
,
A.
,
Butterfass
,
J.
,
Grebenstein
,
M.
,
Gruber
,
R.
,
Hacker
,
F.
,
Kraemer
,
E.
,
Landzettel
,
K.
,
Maier
,
M.
,
Sedlmayr
,
H. J.
,
Seitz
,
N.
,
Wappler
,
F.
,
Willberg
,
B.
,
Wimboeck
,
T.
,
Hirzinger
,
G.
, and
Didot
,
F.
,
2011
, “
Dexhand: A Space Qualified Multi-Fingered Robotic Hand
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
2204
2210
.
20.
Jacobsen
,
S. C.
,
Wood
,
J. E.
,
Knutti
,
D. F.
, and
Biggers
,
K. B.
,
1984
, “
The UTAH/MIT Dextrous Hand: Work in Progress
,”
Int. J. Rob. Res.
,
3
(
4
), pp.
21
50
.
21.
Kawasaki
,
H.
,
Komatsu
,
T.
, and
Uchiyama
,
K.
,
2002
, “
Dexterous Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand II
,”
IEEE/ASME Trans. Mechatronics
,
7
(
3
), pp.
296
303
.
22.
Mouri
,
T.
,
Kawasaki
,
H.
,
Yoshikawa
,
K.
,
Takai
,
J.
, and
Ito
,
S.
,
2002
, “
Anthropomorphic Robot Hand: Gifu Hand III
,”
International Conference on Control, Automation and Systems
(
ICCAS
), Jeonbuk, Korea, Oct. 16–19, Jeonbuk, Korea, Oct. 16–19, pp.
1288
1293
.
23.
Ueda
,
J.
,
Kondo
,
M.
, and
Ogasawara
,
T.
,
2010
, “
The Multifingered NAIST Hand System for Robot In-Hand Manipulation
,”
Mech. Mach. Theory
,
45
(
2
), pp.
224
238
.
24.
Hirzinger
,
G.
,
Fischer
,
M.
,
Brunner
,
B.
,
Koeppe
,
R.
,
Otter
,
M.
,
Grebenstein
,
M.
, and
Schäfer
,
I.
,
1999
, “
Advances in Robotics: The DLR Experience
,”
Int. J. Rob. Res.
,
18
(
11
), pp.
1064
1087
.
25.
Liu
,
H.
,
Wu
,
K.
,
Meusel
,
P.
,
Seitz
,
N.
,
Hirzinger
,
G.
,
Jin
,
M. H.
,
Liu
,
Y. W.
,
Fan
,
S. W.
,
Lan
,
T.
, and
Chen
,
Z. P.
,
2008
, “
Multisensory Five-Finger Dexterous Hand: The DLR/HIT Hand II
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice, France, Sept. 22–26, pp.
3692
3697
.
26.
Fukaya
,
N.
,
Asfour
,
T.
,
Dillmann
,
R.
, and
Toyama
,
S.
,
2013
, “
Development of a Five-Finger Dexterous Hand Without Feedback Control: The TUAT/Karlsruhe Humanoid Hand
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
4533
4540
.
27.
Iwata
,
H.
, and
Sugano
,
S.
,
2009
, “
Design of Anthropomorphic Dexterous Hand With Passive Joints and Sensitive Soft Skins
,”
IEEE/SICE International Symposium on System Integration
(
SII 2009
), Fukuoka, Japan, Aug. 18–21, pp.
129
134
.
28.
Schmitz
,
A.
,
Pattacini
,
U.
,
Nori
,
F.
,
Natale
,
L.
,
Metta
,
G.
, and
Sandini
,
G.
,
2010
, “
Design, Realization and Sensorization of the Dexterous Icub Hand
,”
10th IEEE-RAS International Conference on Humanoid Robots (Humanoids)
, Nashville, TN, Dec. 6–8, pp.
186
191
.
29.
Weir
,
R.
,
Mitchell
,
M.
,
Clark
,
S.
,
Puchhammer
,
G.
,
Haslinger
,
M.
,
Grausenburger
,
R.
,
Kumar
,
N.
,
Hofbauer
,
R.
,
Kushnigg
,
P.
,
Cornelius
,
V.
,
Eder
,
M.
,
Eaton
,
H.
, and
Wenstrand
,
D.
,
2008
, “
The Intrinsic Hand: A 22 Degree-of-Freedom Artificial Hand-Wrist Replacement
,”
Myoelectric Symposium
, Fredericton, NB, Canada, Aug. 13–15, pp.
233
237
.
30.
Kurita
,
Y.
,
Ono
,
Y.
,
Ikeda
,
A.
, and
Ogasawara
,
T.
,
2011
, “
Human-Sized Anthropomorphic Robot Hand With Detachable Mechanism at the Wrist
,”
Mech. Mach. Theory
,
46
(
1
), pp.
53
66
.
31.
Palli
,
G.
,
Melchiorri
,
C.
,
Vassura
,
G.
,
Scarcia
,
U.
,
Moriello
,
L.
,
Berselli
,
G.
,
Cavallo
,
A.
,
De Maria
,
G.
,
Natale
,
C.
,
Pirozzi
,
S.
,
May
,
C.
,
Ficuciello
,
F.
, and
Siciliano
,
B.
,
2014
, “
The DEXMART Hand: Mechatronic Design and Experimental Evaluation of Synergy-Based Control for Human-Like Grasping
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
799
824
.
32.
Palli
,
G.
, and
Pirozzi
,
S.
,
2013
, “
An Optical Joint Position Sensor for Anthropomorphic Robot Hands
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
2765
2770
.
33.
Mitchell
,
M.
, and
Weir
,
R. F.
,
2008
, “
Development of a Clinically Viable Multifunctional Hand Prosthesis
,”
Myoelectric Symposium
, Fredericton, NB, Canada, Aug. 13–15, pp.
45
49
.
34.
Controzzi
,
M.
,
Cipriani
,
C.
,
Jehenne
,
B.
,
Donati
,
M.
, and
Carrozza
,
M. C.
,
2010
, “
Bio-Inspired Mechanical Design of a Tendon-Driven Dexterous Prosthetic Hand
,”
Engineering in Medicine and Biology Society (EMBC)
,
Annual International Conference of the IEEE
, Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
499
502
.
35.
Röthling
,
F.
,
Haschke
,
R.
,
Steil
,
J. J.
, and
Ritter
,
H.
,
2007
, “
Platform Portable Anthropomorphic Grasping With the Bielefeld 20-DOF Shadow and 9-DOF TUM Hand
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Diego, CA, Oct. 29–Nov. 2, pp.
2951
2956
.
36.
Martin
,
J.
, and
Grossard
,
M.
,
2014
, “
Design of a Fully Modular and Backdrivable Dexterous Hand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
783
798
.
37.
Liu
,
H.
,
Meusel
,
P.
,
Hirzinger
,
G.
,
Jin
,
M.
,
Liu
,
Y.
, and
Xie
,
Z.
,
2008
, “
The Modular Multisensory DLR-HIT-Hand: Hardware and Software Architecture
,”
IEEE/ASME Trans. Mechatronics
,
13
(
4
), pp.
461
469
.
38.
Liu
,
H.
,
Meusel
,
P.
,
Seitz
,
N.
,
Willberg
,
B.
,
Hirzinger
,
G.
,
Jin
,
M. H.
,
Liu
,
Y. W.
,
Wei
,
R.
, and
Xie
,
Z. W.
,
2007
, “
The Modular Multisensory DLR-HIT-Hand
,”
Mech. Mach. Theory
,
42
(
5
), pp.
612
625
.
39.
Angeles
,
J.
, and
Park
,
F. C.
,
2008
, “
Performance Evaluation and Design Criteria
,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer
,
Berlin
, pp.
229
244
.
40.
Prattichizzo
,
D.
, and
Trinkle
,
J. C.
,
2008
, “
Grasping
,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer
,
Berlin
, pp.
671
700
.
41.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2008
,
Robotics: Modelling, Planning and Control
,
Springer
,
London
.
42.
Park
,
F. C.
, and
Brockett
,
R. W.
,
1994
, “
Kinematic Dexterity of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
1
15
.
43.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021001
.
44.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
45.
Klein
,
C. A.
, and
Blaho
,
B. E.
,
1987
, “
Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators
,”
Int. J. Rob. Res.
,
6
(
2
), pp.
72
83
.
46.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands Force Control and Kinematic Issues
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
.
47.
Yokokohji
,
Y.
,
Martin
,
J. S.
, and
Fujiwara
,
M.
,
2009
, “
Dynamic Manipulability of Multifingered Grasping
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
947
954
.
48.
Yoshikawa
,
T.
,
1985
, “
Dynamic Manipulability of Robot Manipulators
,”
IEEE International Conference on Robotics and Automation
, St. Louis, MO, Mar. 25, pp.
1033
1038
.
49.
Guan
,
Y.
,
Yokoi
,
K.
, and
Zhang
,
X.
,
2008
, “
Numerical Methods for Reachable Space Generation of Humanoid Robots
,”
Int. J. Rob. Res.
,
27
(
8
), pp.
935
950
.
50.
Hamilton
,
R.
, and
Dunsmuir
,
R. A.
,
2002
, “
Radiographic Assessment of the Relative Lengths of the Bones of the Fingers of the Human Hand
,”
J. Hand Surg.
,
27
(
6
), pp.
546
548
.
51.
Gosselin
,
C.
and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
You do not currently have access to this content.