This paper proposes a method for developing harmonic cantilevers for tapping mode atomic force microscopy (AFM). The natural frequencies of an AFM cantilever are tuned by inserting gridiron holes with specific sizes and locations, such that the higher order resonance frequencies can be assigned to be integer harmonics generated by the nonlinear tip–sample interaction force. The cantilever is modeled using the vibration theory of the Timoshenko beam with a nonuniform cross section. The designed cantilever is fabricated by modifying a commercial cantilever through focused ion beam (FIB) milling. The resonant frequencies of the designed cantilever are verified using a commercial AFM.

References

References
1.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
,
1986
, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
,
56
(
9
), p.
930
.
2.
Eaton
,
P.
, and
West
,
P.
,
2010
,
Atomic Force Microscopy
,
Oxford University Press
,
New York
.
3.
Garcia
,
R.
, and
Perez
,
R.
,
2002
, “
Dynamic Atomic Force Microscopy Methods
,”
Surf. Sci. Rep.
,
47
(
6
), pp.
197
301
.
4.
Mrinalini
,
R. S. M.
,
Sriramshankar
,
R.
, and
Jayanth
,
G.
,
2015
, “
Direct Measurement of Three-Dimensional Forces in Atomic Force Microscopy
,”
IEEE/ASME Trans. Mechatronics
,
20
(
5
), pp.
2184
2193
.
5.
Taffetani
,
M.
,
Raiteri
,
R.
,
Gottardi
,
R.
,
Gastaldi
,
D.
, and
Vena
,
P.
,
2015
, “
A Quantitative Interpretation of the Response of Articular Cartilage to Atomic Force Microscopy-Based Dynamic Nanoindentation Tests
,”
ASME J. Biomech. Eng.
,
137
(
7
), p.
071005
.
6.
Meyer
,
E.
,
1992
, “
Atomic Force Microscopy
,”
Prog. Surf. Sci.
,
41
(
1
), pp.
3
49
.
7.
Zhong
,
Q.
,
Inniss
,
D.
,
Kjoller
,
K.
, and
Elings
,
V.
,
1993
, “
Fractured Polymer/Silica Fiber Surface Studied by Tapping Mode Atomic Force Microscopy
,”
Surf. Sci. Lett.
,
290
(
1
), pp.
L688
L692
.
8.
Stark
,
R. W.
, and
Heckl
,
W. M.
,
2003
, “
Higher Harmonics Imaging in Tapping-Mode Atomic-Force Microscopy
,”
Rev. Sci. Instrum.
,
74
(
12
), pp.
5111
5114
.
9.
Platz
,
D.
,
Tholén
,
E. A.
,
Pesen
,
D.
, and
Haviland
,
D. B.
,
2008
, “
Intermodulation Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
92
(
15
), p.
153106
.
10.
Stark
,
M.
,
Stark
,
R. W.
,
Heckl
,
W. M.
, and
Guckenberger
,
R.
,
2000
, “
Spectroscopy of the Anharmonic Cantilever Oscillations in Tapping-Mode Atomic-Force Microscopy
,”
Appl. Phys. Lett.
,
77
(
20
), pp.
3293
3295
.
11.
Hillenbrand
,
R.
,
Stark
,
M.
, and
Guckenberger
,
R.
,
2000
, “
Higher-Harmonics Generation in Tapping-Mode Atomic-Force Microscopy: Insights Into the Tip–Sample Interaction
,”
Appl. Phys. Lett.
,
76
(
23
), pp.
3478
3480
.
12.
Preiner
,
J.
,
Tang
,
J.
,
Pastushenko
,
V.
, and
Hinterdorfer
,
P.
,
2007
, “
Higher Harmonic Atomic Force Microscopy: Imaging of Biological Membranes in Liquid
,”
Phys. Rev. Lett.
,
99
(
4
), p.
046102
.
13.
Sahin
,
O.
,
Quate
,
C. F.
,
Solgaard
,
O.
, and
Atalar
,
A.
,
2004
, “
Resonant Harmonic Response in Tapping-Mode Atomic Force Microscopy
,”
Phys. Rev. B
,
69
(
16
), p.
165416
.
14.
Legleiter
,
J.
,
Park
,
M.
,
Cusick
,
B.
, and
Kowalewski
,
T.
,
2006
, “
Scanning Probe Acceleration Microscopy (Spam) in Fluids: Mapping Mechanical Properties of Surfaces at the Nanoscale
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
13
), pp.
4813
4818
.
15.
Sahin
,
O.
,
Magonov
,
S.
,
Su
,
C.
,
Quate
,
C. F.
, and
Solgaard
,
O.
,
2007
, “
An Atomic Force Microscope Tip Designed to Measure Time-Varying Nanomechanical Forces
,”
Nat. Nanotechnol.
,
2
(
8
), pp.
507
514
.
16.
Lai
,
C.-Y.
,
Barcons
,
V.
,
Santos
,
S.
, and
Chiesa
,
M.
,
2015
, “
Periodicity in Bimodal Atomic Force Microscopy
,”
J. Appl. Phys.
,
118
(
4
), p.
044905
.
17.
Zhang
,
W.-M.
,
Meng
,
G.
, and
Peng
,
Z.-K.
,
2011
, “
Nonlinear Dynamic Analysis of Atomic Force Microscopy Under Bounded Noise Parametric Excitation
,”
IEEE/ASME Trans. Mechatronics
,
16
(
6
), pp.
1063
1072
.
18.
Rodriguez
,
T. R.
, and
García
,
R.
,
2004
, “
Compositional Mapping of Surfaces in Atomic Force Microscopy by Excitation of the Second Normal Mode of the Microcantilever
,”
Appl. Phys. Lett.
,
84
(
3
), pp.
449
451
.
19.
Sriramshankar
,
R.
, and
Jayanth
,
G.
,
2015
, “
Design and Evaluation of Torsional Probes for Multifrequency Atomic Force Microscopy
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1843
1853
.
20.
Garcia
,
R.
, and
Herruzo
,
E. T.
,
2012
, “
The Emergence of Multifrequency Force Microscopy
,”
Nat. Nanotechnol.
,
7
(
4
), pp.
217
226
.
21.
Sahin
,
O.
,
Yaralioglu
,
G.
,
Grow
,
R.
,
Zappe
,
S.
,
Atalar
,
A.
,
Quate
,
C.
, and
Solgaard
,
O.
,
2004
, “
High-Resolution Imaging of Elastic Properties Using Harmonic Cantilevers
,”
Sens. Actuators A: Phys.
,
114
(
2
), pp.
183
190
.
22.
Li
,
H.
,
Chen
,
Y.
, and
Dai
,
L.
,
2008
, “
Concentrated-Mass Cantilever Enhances Multiple Harmonics in Tapping-Mode Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
92
(
15
), p.
151903
.
23.
Cai
,
J.
,
Xia
,
Q.
,
Luo
,
Y.
,
Zhang
,
L.
, and
Wang
,
M. Y.
,
2015
, “
A Variable-Width Harmonic Probe for Multifrequency Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
106
(
7
), p.
071901
.
24.
Weaver
,
W.
, Jr.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1990
,
Vibration Problems in Engineering
,
Wiley
,
New York
.
25.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
26.
Xia
,
Q.
,
Zhou
,
T.
,
Wang
,
M. Y.
, and
Shi
,
T.
,
2014
, “
Shape and Topology Optimization for Tailoring the Ratio Between Two Flexural Eigenfrequencies of Atomic Force Microscopy Cantilever Probe
,”
Frontiers Mech. Eng.
,
9
(
1
), pp.
50
57
.
27.
Dugush
,
Y.
, and
Eisenberger
,
M.
,
2002
, “
Vibrations of Non-Uniform Continuous Beams Under Moving Loads
,”
J. Sound Vib.
,
254
(
5
), pp.
911
926
.
28.
Ahmadi
,
M.
, and
Nikkhoo
,
A.
,
2014
, “
Utilization of Characteristic Polynomials in Vibration Analysis of Non-Uniform Beams Under a Moving Mass Excitation
,”
Appl. Math. Modell.
,
38
(
7
), pp.
2130
2140
.
29.
Eichhorn
,
V.
,
Bartenwerfer
,
M.
, and
Fatikow
,
S.
,
2012
, “
Nanorobotic Assembly and Focused Ion Beam Processing of Nanotube-Enhanced AFM Probes
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
4
), pp.
679
686
.
You do not currently have access to this content.