A comprehensive contact analysis model to determine the contact positions and clearances of mating thread surfaces in the planetary roller screw mechanism (PRSM) is proposed in this paper. By introducing a three-dimensional clearance vector, the modified conditions of continuous tangency of mating surfaces are established, in which the clearances along all the directions and contact positions of an arbitrary pair of mating surfaces can be calculated. The deviations of the screw, roller, and nut from their nominal positions are considered in the transformation matrices, which describe the position relations of the screw, roller, and nut. Then, the equations of thread surfaces with deviations are derived. Using the modified conditions and the equations of surfaces, the meshing equations at the screw–roller and nut–roller interfaces are derived to compute the clearances along all the directions and contact positions of mating thread surfaces on each pair of thread teeth in the imperfect PRSM. The effectiveness of the proposed model is verified by comparing the contact positions at the screw–roller interface with those from the previously published model. Then, the effect of the direction of clearance vector on the clearances and contact positions is analyzed and discussed. Because of the roller deviation, the clearances between multiple pairs of thread teeth are no longer identical, and the contact positions of a pair of mating thread surfaces on different pairs of thread teeth are different. Also, the parameters of a PRSM without clearances can be obtained from the proposed model in the design process.

References

References
1.
Lemor
,
P. C.
,
1996
, “
The Roller Screw: An Efficient and Reliable Mechanical Component of Electro-Mechanical Actuators
,”
31st Intersociety Energy Conversion Engineering Conference
(
IECEC
), Washington, DC, Aug. 11–16, pp.
215
220
.
2.
Garcia
,
A.
,
Cusido
,
J.
,
Rosero
,
J. A.
,
Orteta
,
J. A.
, and
Romeral
,
L.
,
2008
, “
Reliable Electro-Mechanical Actuators in Aircraft
,”
IEEE Aerosp. Electron. Syst. Mag.
,
23
(
8
), pp.
19
25
.
3.
Budinger
,
M.
,
Reysset
,
A.
,
Halabi
,
T. E.
,
Vasiliu
,
C.
, and
Mare
,
J. C.
,
2014
, “
Optimal Preliminary Design of Electromechanical Actuators
,”
Proc. Inst. Mech. Eng. Part G
,
228
(
9
), pp.
1598
1616
.
4.
Lohmeier
,
S.
,
Buschmann
,
T.
, and
Ulbrich
,
H.
,
2009
, “
Humanoid Robot LOLA
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
775
780
.
5.
Falkner
,
M.
,
Nitschko
,
T.
,
Supper
,
L.
,
Traxler
,
G.
,
Zemann
,
J. V.
, and
Roberts
,
E. W.
,
2003
, “
Roller Screw Lifetime Under Oscillatory Motion: From Dry to Liquid Lubrication
,”
10th European Space Mechanisms and Tribology Symposium
, San Sebastian, Spain, Sept. 24–26, pp.
297
301
.
6.
Otsuka
,
J.
,
Fukada
,
S.
, and
Osawa
,
T.
,
1987
, “
Fundamental Study of Planetary Screw—Structure and Coefficient of Friction
,”
Bull. Jpn. Soc. Precis. Eng.
,
21
(
1
), pp.
43
48
.
7.
Schinstock
,
D. E.
, and
Haskew
,
T. A.
,
1996
, “
Dynamic Load Testing of Roller Screw EMA's
,”
31st Intersociety Energy Conversion Engineering Conference
(
IECEC
), Washington, DC, Aug. 11–16, pp.
221
226
.
8.
Otsuka
,
J.
,
Osawa
,
T.
, and
Fukada
,
S.
,
1989
, “
A Study on the Planetary Roller Screw—Comparison of Static Stiffness and Vibration Characteristics With Those of the Ball Screw
,”
Bull. Jpn. Soc. Precis. Eng.
,
23
(
3
), pp.
217
223
.
9.
Ma
,
S.
,
Liu
,
G.
,
Tong
,
R.
, and
Zhang
,
X.
,
2012
, “
A New Study on the Parameter Relationships of Planetary Roller Screws
,”
Math. Probl. Eng.
,
2012
, p.
340437
.
10.
Rys
,
J.
, and
Lisowski
,
F.
,
2014
, “
The Computational Modal of the Load Distribution Between Elements in Planetary Roller Screw
,”
J. Theor. Appl. Mech.
,
52
(
3
), pp.
699
705
.
11.
Blinov
,
D. S.
, and
Morozov
,
M. I.
,
2014
, “
Uneven Load Distribution Between Mating Windings of Roll and Screw With Nut of Planetary Roller Drive
,”
Sci. Educ.
,
2014
(
9
), pp.
1
14
.
12.
Jones
,
M. H.
, and
Velinsky
,
S. A.
,
2014
, “
Stiffness of the Roller Screw Mechanism by the Direct Method
,”
Mech. Based Des. Struct. Mach. Int. J.
,
42
(
1
), pp.
17
34
.
13.
Zhang
,
W.
,
Liu
,
G.
,
Tong
,
R.
, and
Ma
,
S.
,
2015
, “
Load Distribution of Planetary Roller Screw Mechanism and Its Improvement Approach
,”
Proc. Inst. Mech. Eng. Part C
(online).
14.
Abevi
,
F.
,
Daidie
,
A.
,
Chaussumier
,
M.
, and
Sartor
,
M.
,
2016
, “
Static Load Distribution and Axial Stiffness in a Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
138
(
1
), p.
012301
.
15.
Hojat
,
Y.
, and
Agheli
,
M.
,
2009
, “
A Comprehensive Study on Capabilities and Limitations of Roller Screw With Emphasis on Slip Tendency
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1887
1899
.
16.
Sokolov
,
P. A.
,
Ryakhovsky
,
O. A.
,
Blinov
,
D. S.
, and
Laptev
,
A.
,
2005
, “
Kinematics of Planetary Roller–Screw Mechanisms
,”
Vestn. MGTU Mashinostr.
,
2005
(
1
), pp.
3
14
(in Russian).
17.
Velinsky
,
S. A.
,
Chu
,
B.
, and
Lasky
,
T. A.
,
2009
, “
Kinematics and Efficiency Analysis of the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011016
.
18.
Ma
,
S.
,
Zhang
,
T.
,
Liu
,
G.
, and
Fu
,
X.
,
2015
, “
Kinematics of Planetary Roller Screw Mechanism Considering Helical Directions of Screw and Roller Threads
,”
Math. Probl. Eng.
,
2015
, p.
459462.
.
19.
Jones
,
M. H.
, and
Velinsky
,
S. A.
,
2012
, “
Kinematics of Roller Migration in the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061006
.
20.
Jones
,
M. H.
,
Velinsky
,
S. A.
, and
Lasky
,
T. A.
,
2016
, “
Dynamics of the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
014503
.
21.
Blinov
,
D. S.
,
Morozov
,
M. I.
, and
Anisimov
,
P. D.
,
2015
, “
Mathematical Support and Software of Processing Results of Metrological Roller Screw Detail Measurements
,”
Sci. Educ.
,
2015
(
1
), pp.
12
31
(in Russian).
22.
Blinov
,
D. S.
,
Morozov
,
M. I.
, and
Anisimov
,
P. D.
,
2015
, “
On Working Capacity Criteria for Screw-Roller Mechanisms
,”
Sci. Educ.
,
2015
(
8
), pp.
32
50
(in Russian).
23.
Auregan
,
G.
,
Fridrici
,
V.
,
Kapsa
,
P.
, and
Rodrigues
,
F.
,
2015
, “
Experimental Simulation of Rolling-Sliding Contact for Application to Planetary Roller Screw Mechanism
,”
Wear
,
332–333
, pp.
1176
1184
.
24.
Ma
,
S.
,
Liu
,
G.
,
Tong
,
R.
, and
Fu
,
X.
,
2015
, “
A Frictional Heat Model of Planetary Roller Screw Mechanism Considering Load Distribution
,”
Mech. Based Des. Struct. Mach.
,
43
(
2
), pp.
164
182
.
25.
Zhang
,
D.
,
Zhao
,
S.
,
Wu
,
S.
,
Zhang
,
Q.
,
Fan
,
S.
, and
Li
,
J.
,
2015
, “
Phase Characteristic Between Dies Before Rolling for Thread and Spline Synchronous Rolling Process
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1
), pp.
513
528
.
26.
Abevi
,
F.
,
Daidie
,
A.
,
Chaussumier
,
M.
, and
Orieux
,
S.
,
2016
, “
Static Analysis of an Inverted Planetary Roller Screw Mechanism
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041020
.
27.
Blinov
,
D. S.
,
Ryakhovsky
,
O. A.
, and
Sokolov
,
P. A.
,
1996
, “
Numerical Method of Determining the Point of Initial Thread Contact of Two Screws With Parallel Axes and Different Thread Inclinations
,”
Vestn. MGTU Mashinostr.
,
1996
(
3
), pp.
93
97
(in Russian).
28.
Ryakhovskiy
,
O. A.
,
Sorokin
,
F. D.
, and
Marokhin
,
A. S.
,
2013
, “
Calculation of Radial Displacements of Nut and Rollers Axes and the Position of a Contact Between the Nut and the Roller Thread in an Inverted Planetary Roller Screw Mechanism
,”
Higher Educational Institutions Machine Building
, Vol.
11
, pp.
12
19
(in Russian).
29.
Jones
,
M. H.
, and
Velinsky
,
S. A.
,
2013
, “
Contact Kinematics in the Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051003
.
30.
Liu
,
Y. Q.
,
Wang
,
J. S.
,
Cheng
,
H. G.
, and
Sun
,
Y. P.
,
2015
, “
Kinematics Analysis of the Roller Screw Based on the Accuracy of Meshing Point Calculation
,”
Math. Probl. Eng.
,
2015
, p.
303972
.
31.
Fu
,
X.
,
Liu
,
G.
,
Ma
,
S.
, and
Tong
,
R.
,
2016
, “
Studies on Meshing Mechanism of Helical Surfaces in Planetary Roller Screw Mechanism
,”
J. Mech. Eng.
,
52
(
3
), pp.
26
33
(in Chinese).
32.
Tselishchev
,
A. S.
, and
Zharov
,
I. S.
,
2008
, “
Elastic Elements in Roller-Screw Mechanisms
,”
Russian Eng. Res.
,
28
(
11
), pp.
1040
1043
.
33.
Karam
,
W.
, and
Mare
,
J. C.
,
2009
, “
Modelling and Simulation of Mechanical Transmission in Roller-Screw Electromechanical Actuators
,”
Aircr. Eng. Aerosp. Technol. Int. J.
,
81
(
4
), pp.
288
298
.
34.
Litvin
,
F. L.
,
1994
,
Gear Geometry and Applied Theory
,
PTR Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.