This paper presents a novel sustainable design-oriented level set topology optimization method. It addresses the sustainability issue in product family design, which means an end-of-life (EoL) product can be remanufactured through subtractive machining into another lower-level model within the product family. In this way, the EoL product is recycled in an environmental-friendly and energy-saving manner. Technically, a sustainability constraint is proposed that the different product models employ the containment relationship, which is a necessary condition for the subtractive remanufacturing. A novel level set-based product family representation is proposed to realize the containment relationship, and the related topology optimization problem is formulated and solved. In addition, spatial arrangement of the input design domains is explored to prevent highly stressed material regions from reusing. Feature-based level set concept for sustainability is then used. The novelty of the proposed method is that, for the first time, the product lifecycle issue of sustainability is addressed by a topology optimization method. The effectiveness of the proposed method is proved through a few numerical examples.

References

References
1.
Wang
,
M. Y.
,
Wang
,
X. M.
, and
Guo
,
D. M.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
, pp.
227
246
.
2.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
104
, pp.
363
393
.
3.
Allaire
,
G.
, and
Jouve
,
F.
,
2008
, “
Minimum Stress Optimal Design With the Level Set Method
,”
Eng. Anal. Boundary Elem.
,
32
(
11
), pp.
909
918
.
4.
Guo
,
X.
,
Zhang
,
W. S.
,
Wang
,
M. Y.
, and
Wei
,
P.
,
2011
, “
Stress-Related Topology Optimization Via Level Set Approach
,”
Comput. Methods Appl. Mech. Eng.
,
200
, pp.
3439
3452
.
5.
Xia
,
Q.
,
Shi
,
T. L.
,
Liu
,
S. Y.
, and
Wang
,
M. Y.
,
2012
, “
A Level Set Solution to the Stress-Based Structural Shape and Topology Optimization
,”
Comput. Struct.
,
90–91
, pp.
55
64
.
6.
Wang
,
M. Y.
, and
Li
,
L.
,
2013
, “
Shape Equilibrium Constraint: A Strategy for Stress-Constrained Structural Topology Optimization
,”
Struct. Multidisc. Optim.
,
47
(
3
), pp.
335
352
.
7.
Zhang
,
W. S.
,
Guo
,
X.
,
Wang
,
M. Y.
, and
Wei
,
P.
,
2013
, “
Optimal Topology Design of Continuum Structures With Stress Concentration Alleviation Via Level Set Method
,”
Int. J. Numer. Methods Eng.
,
93
(
9
), pp.
942
959
.
8.
Emmendoerfer
,
H.
, Jr.
, and
Fancello
,
E. A.
,
2014
, “
A Level Set Approach for Topology Optimization With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
99
(
2
), pp.
129
156
.
9.
Wang
,
M. Y.
, and
Wang
,
X. M.
,
2004
, “
Color Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
469
496
.
10.
Wang
,
M. Y.
, and
Wang
,
X. M.
,
2005
, “
A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects
,”
Comput. Aided Des.
,
37
(
3
), pp.
321
337
.
11.
Xia
,
Q.
, and
Wang
,
M. Y.
,
2008
, “
Simultaneous Optimization of the Material Properties and the Topology of Functionally Graded Structures
,”
Comput. Aided Des.
,
40
(
6
), pp.
660
675
.
12.
Zhou
,
S. W.
, and
Li
,
Q.
,
2008
, “
A Variational Level Set Method for the Topology Optimization of Steady-State Navier–Stokes Flow
,”
J. Comput. Phys.
,
227
(
24
), pp.
10178
10195
.
13.
Challis
, V
. J.
, and
Guest
,
J. K.
,
2009
, “
Level Set Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
79
(
10
), pp.
1284
1308
.
14.
Deng
,
Y. B.
,
Zhang
,
P.
,
Liu
,
Y. S.
,
Wu
,
Y. H.
, and
Liu
,
Z. Y.
,
2013
, “
Optimization of Unsteady Incompressible Navier–Stokes Flows Using Variational Level Set Method
,”
Int. J. Numer. Methods Eng.
,
71
(
12
), pp.
1475
1493
.
15.
Deng
,
Y. B.
,
Liu
,
Z. Y.
,
Wu
,
J. F.
, and
Wu
,
Y. H.
,
2013
, “
Topology Optimization of Steady Navier–Stokes Flow With Body Force
,”
Comput. Methods Appl. Mech. Eng.
,
255
, pp.
306
321
.
16.
Ha
,
S. H.
, and
Cho
,
S.
,
2005
, “
Topological Shape Optimization of Heat Conduction Problems Using Level Set Approach
,”
Numer. Heat Transfer, Part B
,
48
(
1
), pp.
67
88
.
17.
Zhuang
,
C. G.
,
Xiong
,
Z. H.
, and
Ding
,
H.
,
2007
, “
A Level Set Method for Topology Optimization of Heat Conduction Problem Under Multiple Load Cases
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
1074
1084
.
18.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidisc. Optim.
,
48
(
3
), pp.
437
472
.
19.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidisc. Optim.
,
48
(
6
), pp.
1031
1055
.
20.
Lee
,
S. G.
,
Ma
,
Y. S.
,
Thimm
,
G. L.
, and
Verstraeten
,
J.
,
2008
, “
Product Lifecycle Management in Aviation Maintenance, Repair and Overhaul
,”
Comput. Ind.
,
59
, pp.
296
303
.
21.
Xia
,
Q.
,
Shi
,
T. L.
,
Wang
,
M. Y.
, and
Liu
,
S. Y.
,
2010
, “
A Level Set Based Method for the Optimization of Cast Part
,”
Struct. Multidisc. Optim.
,
41
(
5
), pp.
735
747
.
22.
Allaire
,
G.
,
Jouve
,
F.
, and
Michailidis
,
G.
,
2013
, “
Casting Constraints in Structural Optimization Via a Level-Set Method
,”
10th World Congress on Structural and Multidisciplinary Optimization
, Orlando, FL, May.
23.
Liu
,
J. K.
,
Ma
,
Y. S.
,
Fu
,
J. Y.
, and
Duke
,
K.
,
2015
, “
A Novel CACD/CAD/CAE Integrated Design Framework for Fiber-Reinforced Plastic Parts
,”
Adv. Eng. Software
,
87
, pp.
13
29
.
24.
Liu
,
J. K.
, and
Ma
,
Y. S.
,
2015
, “
3D Level-Set Topology Optimization: A Machining Feature-Based Approach
,”
Struct. Multidisc. Optim.
,
52
(
3
), pp.
563
582
.
25.
King
,
A. M.
,
Burgess
,
S. C.
,
Ijomah
,
W.
, and
McMahon
,
C. A.
,
2006
, “
Reducing Waste: Repair, Recondition, Remanufacture or Recycle?
,”
Sustainable Dev.
,
14
(
4
), pp.
257
267
.
26.
Chick
,
A.
, and
Micklethwaite
,
P.
,
2002
, “
Obstacles to UK Architects and Designers Specifying Recycled Products and Materials
,”
Design History Society Conference
, Aberystwyth, UK, Sept. 3–5.
27.
Le
, V
. T.
,
Paris
,
H.
, and
Mandil
,
G.
,
2015
, “
Using Additive and Subtractive Manufacturing Technologies in a New Remanufacturing Strategy to Produce New Parts From End-of-Life Parts
,”
22nd France Mechanical Congress
, Lyon, France, Aug. 24–28.
28.
Mandil
,
G.
,
Le
, V
. T.
,
Paris
,
H.
, and
Suard
,
M.
,
2016
, “
Building New Entities From Existing Titanium Part by Electron Beam Melting: Microstructures and Mechanical Properties
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5
), pp.
1835
1846
.
29.
Ulu
,
E.
,
Korkmaz
,
E.
,
Yay
,
K.
,
Ozdoganlar
,
O. B.
, and
Kara
,
L. B.
,
2015
, “
Enhancing the Structural Performance of Additively Manufactured Objects Through Build Orientation Optimization
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111410
.
30.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
31.
Lund
,
R.
,
1985
, “
Remanufacturing: The Experience of the United States and Implications for Developing Countries
,” The World Bank, Washington, DC, Technical Paper No. 31, UNDP Project Management Report 2.
32.
Torstenfelt
,
B.
, and
Klarbring
,
A.
,
2006
, “
Structural Optimization of Modular Product Families With Application to Car Space Frame Structures
,”
Struct. Multidisc. Optim.
,
32
(
2
), pp.
133
140
.
33.
Torstenfelt
,
B.
, and
Klarbring
,
A.
,
2007
, “
Conceptual Optimal Design of Modular Car Product Families Using Simultaneous Size, Shape and Topology Optimization
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1050
1061
.
34.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Front Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
35.
Wang
,
Y. Q.
,
Luo
,
Z.
,
Kang
,
Z.
, and
Zhang
,
N.
,
2015
, “
A Multi-Material Level Set-Based Topology and Shape Optimization Method
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
1570
1586
.
36.
Wang
,
M. Y.
,
Chen
,
S. K.
,
Wang
,
X.
, and
Mei
,
Y.
,
2005
, “
Design of Multi-Material Compliant Mechanism Using Level Set Methods
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
941
956
.
37.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
,
2014
, “
Stress-Related Topology Optimization of Continuum Structures Involving Multi-Phase Materials
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
632
655
.
38.
Michailidis
,
G.
,
2014
, “
Manufacturing Constraints and Multi-Phase Shape and Topology Optimization Via a Level-Set Method
,”
Doctoral dissertation
, Ecole Polytechnique X, Palaiseau, France.
39.
Li
,
H. W.
, and
Tai
,
X. C.
,
2006
, “
Piecewise Constant Level Set Methods for Multiphase Motion
,” University of California at Los Angeles, Los Angeles, CA, Technical Report No. 06-17.
40.
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Piecewise Constant Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
78
(
4
), pp.
379
402
.
41.
Luo
,
Z.
,
Tong
,
L.
,
Luo
,
J.
,
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Design of Piezoelectric Actuators Using a Multiphase Level Set Method of Piecewise Constants
,”
J. Comput. Phys.
,
228
(
7
), pp.
2643
2659
.
42.
Chen
,
S.
,
Gonella
,
S.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2010
, “
A Level Set Approach for Optimal Design of Smart Energy Harvesters
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
2532
2543
.
43.
Chen
,
J.
,
Shapiro
,
V.
,
Suresh
,
K.
, and
Tsukanov
,
I.
,
2007
, “
Shape Optimization With Topological Changes and Parametric Control
,”
Int. J. Numer. Methods Eng.
,
71
(
3
), pp.
313
346
.
44.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
45.
Zhang
,
W. S.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidisc. Optim.
,
53
(
6
), pp.
1243
1260
.
46.
Norato
,
J. A.
,
Bell
,
B. K.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
47.
Mei
,
Y. L.
,
Wang
,
X. M.
, and
Cheng
,
G. D.
,
2008
, “
A Feature-Based Topological Optimization for Structure Design
,”
Adv. Eng. Software
,
39
(
2
), pp.
71
87
.
48.
Holmberg
,
E.
,
Torstenfelt
,
B.
, and
Klarbring
,
A.
,
2014
, “
Fatigue Constrained Topology Optimization
,”
Struct. Multidisc. Optim.
,
50
(
2
), pp.
207
219
.
You do not currently have access to this content.