Firms engaging in product development (PD) face the imperative problem of allocating scarce development resources to a multitude of opportunities. In this paper, we propose a mathematical formulation to optimize PD investment or resource allocation decisions. The model maximizes the performance of a product under development, based on its architecture and the firm's available resource, by choosing the optimal resource allocation across product modules and design rules that govern the relationships between these modules. Results based on a comprehensive experiment (with various architectural patterns, escalating number of dependencies, and different problem sizes) shed light on three important hypotheses. First, product architecture affects resource allocation decisions and ultimately product performance. The second hypothesis tests whether modular or integral architectures can attain higher performance levels based on our formulation. A third hypothesis states that there is a shift in the temporal allocation of resources from design rules to individual modules, thus supporting the move from integral to modular architectures as the product evolves across multiple generations. Finally, the model and the experimental results provide design and managerial insights to both development engineers and managers. Specifically, for development engineers, the model and its analysis provide guidance for selecting the product architecture which leads to maximum performance. For development managers, the model and its analysis assist in deciding the optimal budget proportions to be allocated to modules and to design rules, given a fixed architecture and budget.

References

References
1.
Crawley
,
E.
,
de Weck
,
O.
,
Eppinger
,
S.
,
Magee
,
C.
,
Moses
,
J.
,
Seering
,
W.
,
Schindall
,
J.
,
Wallace
,
D.
, and
Whitney
,
D.
,
2004
, “
The Influence of Architecture in Engineering Systems
,”
MIT Engineering Systems Monograph
, MIT, Cambridge, MA.
2.
Simon
,
H. A.
,
1965
, “
The Architecture of Complexity
,”
Gen. Systems
,
10
, pp.
63
76
.
3.
Bar-Yam
,
Y.
,
1997
,
Dynamics of Complex Systems
, Vol.
213
,
Addison-Wesley
,
Reading, MA
.
4.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
J. Res. Policy
,
24
(
3
), pp.
419
440
.
5.
Barabasi
,
A. L.
,
2002
,
Linked: The Science of Networks
,
Perseus Publishing
,
Cambridge, MA
.
6.
Newman
,
M. E.
,
2003
, “
The Structure and Function of Complex Networks
,”
SIAM Rev.
,
45
(
2
), pp.
167
256
.
7.
Baldwin
,
C.
, and
Clark
,
K.
,
2000
,
Design Rules: The Power of Modularity
,
MIT Press
,
Cambridge, MA
.
8.
Yu
,
T. L.
,
Yassine
,
A. A.
, and
Goldberg
,
D. E.
,
2007
, “
An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms
,”
Res. Eng. Des.
,
18
(
2
), pp.
91
109
.
9.
Borjesson
,
F.
, and
Hölttä-Otto
,
K.
,
2014
, “
A Module Generation Algorithm for Product Architecture Based on Component Interactions and Strategic Drivers
,”
Res. Eng. Des.
,
25
(
1
), pp.
31
51
.
10.
Kalsi
,
M.
,
Hacker
,
K.
, and
Lewis
,
K.
,
2001
, “
A Comprehensive Robust Design Approach for Decision Trade-Offs in Complex Systems Design
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
1
10
.
11.
Mihm
,
J.
,
Lock
,
C.
, and
Huchzermeier
,
A.
,
2003
, “
Problem-Solving Oscillations in Complex Engineering Projects
,”
Manage. Sci.
,
49
(
6
), pp.
733
750
.
12.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
4
), pp.
213
235
.
13.
Frenken
,
K.
,
2006
, “
A Fitness Landscape Approach to Technological Complexity, Modularity, and Vertical Disintegration
,”
Struct. Change Econ. Dyn.
,
17
(
3
), pp.
288
305
.
14.
Hölttä-Otto
,
K.
, and
de Weck
,
O.
,
2007
, “
Degree of Modularity in Engineering Systems and Products With Technical and Business Constraints
,”
Concurrent Eng.
,
15
(
2
), pp.
113
126
.
15.
Cutherell
,
D.
,
1996
, “
Product Architecture
,”
The PDMA Handbook of New Product Development
,
M.
Rosenau
,
A.
Griffin
,
G.
Castellion
, and
N.
Anschuetz
, eds.,
Wiley
, Hoboken, NJ.
16.
Whitney
,
D. E.
,
2004
, “
Physical Limits to Modularity
,” Massachusetts Institute of Technology, Engineering Systems Division,
Paper No. ESD-WP-2003-01.03-ESD
.
17.
Yassine
,
A.
,
Falkenburg
,
D.
, and
Chelst
,
K.
,
1999
, “
Engineering Design Management: An Information Structure Approach
,”
Int. J. Production Res.
,
37
(
13
), pp.
2957
2975
.
18.
Yassine
,
A.
, and
Braha
,
D.
,
2003
, “
Complex Concurrent Engineering and the Design Structure Matrix Method
,”
Concurrent Eng Res. Appl.
,
11
(
3
), pp.
165
176
.
19.
Cohen
,
M. A.
,
Eliasberg
,
J.
, and
Ho
,
T. H.
,
1996
, “
New Product Development: The Performance and Time-to-Market Tradeoff
,”
Manage. Sci.
,
42
(
2
), pp.
173
186
.
20.
Joglekar
,
N.
,
Yassine
,
A.
,
Eppinger
,
S.
, and
Whitney
,
D.
,
2001
, “
Performance of Coupled Product Development Activities With a Deadline
,”
Manage. Sci.
,
47
(
12
), pp.
1605
1620
.
21.
Kamrad
,
B.
,
Schmidt
,
G. M.
, and
Ulku
,
S.
,
2013
, “
Analyzing Product Architecture Under Technological Change: Modular Upgradeability Tradeoffs
,”
IEEE Trans. Eng. Manage.
,
60
(
2
), pp.
289
300
.
22.
Henderson
,
R. M.
, and
Clark
,
K. B.
,
1990
, “
Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms
,”
Administrative Sci. Q.
,
35
(
1
), pp.
9
30
.
23.
Rivkin
,
J.
, and
Siggelkow
,
N.
,
2007
, “
Patterned Interactions in Complex Systems: Implications for Exploration
,”
Manage. Sci.
,
53
(
7
), pp.
1068
1085
.
24.
Braha
,
D.
, and
Bar-Yam
,
Y.
,
2007
, “
The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results
,”
Manage. Sci.
,
53
(
7
), pp.
1127
1145
.
25.
Gokpinar
,
B.
,
Hopp
,
W. J.
, and
Iravani
,
S. M.
,
2010
, “
The Impact of Misalignment of Organizational Structure and Product Architecture on Quality in Complex Product Development
,”
Manage. Sci.
,
56
(
3
), pp.
468
484
.
26.
Sosa
,
M.
,
Mihm
,
J.
, and
Browning
,
T.
,
2011
, “
Degree Distribution and Quality in Complex Engineered Systems
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101008
.
27.
Cataldo
,
M.
, and
Ehrlich
,
K.
,
2012
, “
The Impact of Communication Structure on New Product Development Outcomes
,”
SIGCHI
Conference on Human Factors in Computing Systems
, ACM, New York, pp.
3081
3090
.
28.
Fuge
,
M.
,
Tee
,
K.
,
Agogino
,
A.
, and
Maton
,
N.
,
2014
, “
Analysis of Collaborative Design Networks: A Case Study of Openideo
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
2
), p.
021009
.
29.
Ethiraj
,
S. K.
,
2007
, “
Allocation of Inventive Effort in Complex Product Systems
,”
Strategic Manage. J.
,
28
(
6
), pp.
563
584
.
30.
Ethiraj
,
S. K.
, and
Posen
,
H. E.
,
2013
, “
Do Product Architectures Affect Innovation Productivity in Complex Product Ecosystems
,”
Adv. Strategic Manage.
,
30
, pp.
127
166
.
31.
Dong
,
A.
, and
Sarkar
,
S.
,
2015
, “
Forecasting Technological Progress Potential Based on the Complexity of Product Knowledge
,”
Technol. Forecasting Soc. Change
,
90
(Pt. B), pp.
599
610
.
32.
Schilling
,
M. A.
,
2000
, “
Towards a General Modular Systems Theory and Its Application to Interfirm Product Modularity
,”
Acad. Manage. Rev.
,
25
(
2
), pp.
312
334
.
33.
Christensen
,
C. M.
,
Verlinden
,
M.
, and
Westerman
,
G.
,
2002
, “
Disruption, Disintegration and the Dissipation of Differentiability
,”
Ind. Corporate Change
,
11
(
5
), pp.
955
993
.
34.
Fixson
,
S. K.
, and
Park
,
J. K.
,
2008
, “
The Power of Integrality: Linkages Between Product Architecture, Innovation, and Industry Structure
,”
Res. Policy
,
37
(
8
), pp.
1296
1316
.
35.
Fine
,
C. H.
, and
Whitney
,
D. E.
,
1999
, “
Is the Make–Buy Decision Process a Core Competence?
,”
Logistics in the Information Age
,
M.
Muffatto
and
K.
Pawar
, eds.,
Servizi Grafici Editoriali
,
Padova, Italy
, pp.
31
63
.
36.
Langlois
,
R.
, and
Robertson
,
P.
,
1992
, “
Networks and Innovation in a Modular System: Lessons From the Microcomputer and Stereo Component Industries
,”
Res. Policy
,
21
(
4
), pp.
297
313
.
37.
Grove
,
A. S.
,
1996
,
Only the Paranoid Survive
,
Doubleday
,
New York
.
38.
Luo
,
J.
,
2015
, “
A Simulation-Based Method to Evaluate the Impact of Product Architecture on Product Evolvability
,”
Res. Eng. Des.
,
26
(
4
), pp.
355
371
.
39.
Frenken
,
K.
, and
Mendritzki
,
S.
,
2012
, “
Optimal Modularity: A Demonstration of the Evolutionary Advantage of Modular Architectures
,”
J. Evol. Econ.
,
22
(
5
), pp.
935
956
.
40.
Foster
,
R.
,
1986
, “
The S Curve: A New Forecasting Tool
,”
The Attacker's Advantage
,
Summit Books
, Simon and Schuster,
New York
, pp.
88
111
.
41.
Anderson
,
P.
, and
Tushman
,
M.
,
1990
, “
Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change
,”
Administrative Sci. Q.
,
35
(
4
), pp.
604
633
.
42.
Dutton
,
J. M.
, and
Thomas
,
A.
,
1984
, “
Treating Progress Functions as a Managerial Opportunity
,”
Acad. Manage. Rev.
,
9
(
2
), pp.
235
247
.
43.
Allada
,
V.
, and
Lan
,
J.
,
2002
, “
New Modules Launch Planning For Evolving Modular Product Families
,”
ASME
Paper No. DETC2002/DFM-34190.
44.
Loch
,
C. H.
, and
Terwiesch
,
C.
,
1998
, “
Communication and Uncertainty in Concurrent Engineering
,”
Manage. Sci.
,
44
(
8
), pp.
1032
1048
.
45.
McNerney
,
J.
,
Farmer
,
J. D.
,
Redner
,
S.
, and
Trancik
,
J. E.
,
2011
, “
Role of Design Complexity in Technology Improvement
,”
Proc. Natl Acad. Sci.
,
108
(
22
), pp.
9008
9013
.
46.
Smith
,
R. P.
, and
Eppinger
,
S. D.
,
1997
, “
Identifying Controlling Features of Engineering Design Iteration
,”
Manage. Science
,
43
(
3
), pp.
276
293
.
47.
Yassine
,
A.
,
Joglekar
,
N.
,
Braha
,
D.
,
Eppinger
,
S. D.
, and
Whitney
,
D.
,
2003
, “
Information Hiding in Product Development: The Design Churn Effect
,”
Res. Eng. Des.
,
14
(
3
), pp.
131
144
.
48.
Van Wie
,
M. J.
,
Greer
,
J. L.
,
Campbell
,
M. I.
,
Stone
,
R. B.
, and
Wood
,
K. L.
,
2001
, “
Interfaces and Product Architecture
,” ASME
DETC
and Computers and Information in Engineering Conference, Pittsburg, PA, Sept. 9–12, Vol.
1
, pp.
9
12
.
49.
Greer
,
J.
,
2002
, “
Effort Flow Analysis: A Methodology for Directed Product Evolution Using Rigid Body and Compliant Mechanisms
,” Ph.D. dissertation, University of Texas at Austin, Austin, TX.
50.
Whitney
,
D. E.
,
2005
, “
Degree Correlations and Motifs in Technological Networks
,” Massachusetts Institute of Technology, Engineering Systems Division,
Paper No. ESD-WP-2005-10
.
51.
Whitney
,
D. E.
,
2008
, “
Network Models of Mechanical Assemblies
,”
Unifying Themes in Complex Systems
,
Springer
,
Berlin
, pp.
331
338
.
52.
Stellman
,
A.
, and
Greene
,
J.
,
2005
,
Applied Software Project Management
,
O'Reilly Media
, Sebastopol, CA.
53.
McCabe
,
T. J.
,
1976
, “
A Complexity Measure
,”
IEEE Trans. Software Eng.
,
SE-2
(4), pp.
308
320
.
54.
Sosa
,
M.
,
Mihm
,
J.
, and
Browning
,
T.
,
2013
, “
Linking Cyclicality and Product Quality
,”
Manuf. Serv. Oper. Manage.
,
15
(
3
), pp.
473
491
.
55.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications
,
MIT Press
,
Cambridge, MA
.
56.
Ağralı
,
S.
, and
Geunes
,
J.
,
2009
, “
Solving Knapsack Problems With S-Curve Return Functions
,”
Eur. J. Oper. Res.
,
193
(
2
), pp.
605
615
.
57.
Meier
,
C.
,
Yassine
,
A. A.
, and
Browning
,
T. R.
,
2007
, “
Design Process Sequencing With Competent Genetic Algorithms
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
566
585
.
58.
Zacharias
,
N. A.
, and
Yassine
,
A. A.
,
2008
, “
Optimal Platform Investment for Product Family Design
,”
J. Intell. Manuf.
,
19
(
2
), pp.
131
148
.
59.
Sharman
,
D.
, and
Yassine
A.
,
2004
, “
Characterizing Complex Product Architectures
,”
Syst. Eng.
,
7
(
1
), pp.
35
60
.
60.
Valverde
,
S.
,
Cancho
,
R. F.
, and
Sole
,
R. V.
,
2002
, “
Scale-Free Networks From Optimal Design
,”
Europhys. Lett.
,
60
(
4
), p.
512
.
61.
Le
,
Q.
,
Sha
,
Z.
, and
Panchal
,
J. H.
,
2014
, “
A Generative Network Model for Product Evolution
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
1
), p.
011003
.
62.
Barabasi
,
A. L.
, and
Albert
,
R.
,
1999
, “
Emergence of Scaling in Random Networks
,”
Science
,
286
(
5439
), pp.
509
512
.
You do not currently have access to this content.