In this paper, we present a flywheel that can adaptively generate variable equivalent mass in response to application requirements. The motivation for the design comes from the need to achieve passive inertial mass, which eventually will lead to passive vibration isolation. This flywheel features a “host” flywheel frame with four sliders, each in a separate track. As the rotational speed of the variable inertia flywheel changes, the distance between sliders and rotation center changes, leading to a variable equivalent mass. The mathematical model of the flywheel is developed to examine its performance. The flywheel is mounted on a two-terminal hydraulic device to test its behavior. Experimental work has also been carried out to identify the parameters of the system (hydraulic device plus flywheel). The mathematical model with the identified parameters is then validated experimentally. During the experiments, the variable inertial force generated by the variable inertia flywheel in response to the changes in the excitation inputs is in good agreement with the prediction of the mathematical model, with the exception of spikes due to backlash of the two-terminal hydraulic system. The proposed design and experimental approach could inspire other passive variable inertial mass control of vibration systems.

References

References
1.
Feng
,
Z.
, and
Zuo
,
M.
,
2012
, “
Vibration Signal Models for Fault Diagnosis of Planetary Gearboxes
,”
J. Sound Vib.
,
331
(
22
), pp.
4919
4939
.
2.
Li
,
C.
,
Liang
,
M.
, and
Wang
,
T.
,
2015
, “
Criterion Fusion for Spectral Segmentation and Its Application to Optimal Demodulation of Bearing Vibration Signals
,”
Mech. Syst. Signal Process.
,
64–65
, pp.
132
148
.
3.
Vasquez
,
R. E.
,
Crane
,
C. D.
, III
, and
Correa
,
J. C.
,
2014
, “
Analysis of a Planar Tensegrity Mechanism for Ocean Wave Energy Harvesting
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031015
.
4.
Spiekermann
,
C. E.
,
Radcliffe
,
C. J.
, and
Goodman
,
E. D.
,
1985
, “
Optimal Design and Simulation of Vibrational Isolation Systems
,”
J. Mech. Trans. Autom.
,
107
(
2
), pp.
271
276
.
5.
Hu
,
H.
,
2005
,
Fundamentals of Mechanical Vibration
,
Beihang University Press
,
Beijing, China
.
6.
Richiedei
,
D.
,
Trevisani
,
A.
, and
Zanardo
,
G.
,
2011
, “
A Constrained Convex Approach to Modal Design Optimization of Vibrating Systems
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061011
.
7.
Sun
,
J. Q.
,
Jolly
,
M. R.
, and
Norris
,
M. A.
,
1995
, “
Passive, Adaptive and Active Tuned Vibration Absorbers—A Survey
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
234
242
.
8.
Karnopp
,
D.
,
1995
, “
Active and Semi-Active Vibration Isolation
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
177
185
.
9.
Sinha
,
A.
,
2010
,
Vibration of Mechanical Systems
,
Cambridge University Press
,
Cambridge, NY
.
10.
Simoes
,
R. C.
, and
Steffen
,
V.
,
2007
, “
Modal Active Vibration Control of a Rotor Using Piezoelectric Stack Actuators
,”
J. Vib. Control
,
13
(
1
), pp.
45
64
.
11.
Amer
,
N. H.
,
Ramli
,
R.
,
Wan Mahadi
,
W. N. L.
, and
Zainul Abidin
,
M. A.
,
2014
, “
Implementations of PID Controller and Its Transient Behaviour in Active Suspension System
,”
Adv. Mater. Res.
,
895
(
10
), pp.
490
499
.
12.
Fuller
,
C. R.
,
Elliott
,
S.
, and
Nelson
,
P. A.
,
1997
,
Active Control of Vibration
,
Academic Press
,
San Diego, CA
.
13.
Liu
,
Y.
,
Matsuhisa
,
H.
, and
Utsuno
,
H.
,
2008
, “
Semi-Active Vibration Isolation System With Variable Stiffness and Damping Control
,”
J. Sound Vib.
,
313
(
1–2
), pp.
16
28
.
14.
Caruso
,
G.
,
Ben Mekki
,
O.
, and
Bourquin
,
F.
,
2009
, “
Modeling and Experimental Validation of a New Electromechanical Damping Device
,”
J. Vibroengineering
,
11
(
4
), pp.
617
626
.
15.
Weber
,
F.
,
Boston
,
C.
, and
Maślanka
,
M.
,
2011
, “
An Adaptive Tuned Mass Damper Based on the Emulation of Positive and Negative Stiffness With an MR Damper
,”
Smart Mater. Struct.
,
20
(
1
), p.
15012
.
16.
Kasemi
,
B.
,
Muthalif
,
A. G. A.
,
Rashid
,
M. M.
, and
Fathima
,
S.
,
2012
, “
Fuzzy-PID Controller for Semi-Active Vibration Control Using Magnetorheological Fluid Damper
,”
Procedia Eng.
,
41
, pp.
1221
1227
.
17.
Joshi
,
A.
, and
Jangid
,
R.
,
1997
, “
Optimum Parameters of Multiple Tuned Mass Dampers for Base-Excited Damped Systems
,”
J. Sound Vib.
,
202
(
5
), pp.
657
667
.
18.
Shi
,
X.
, and
Cai
,
C. S.
,
2008
, “
Suppression of Vehicle-Induced Bridge Vibration Using Tuned Mass Damper
,”
J. Vib. Control
,
14
(
7
), pp.
1037
1054
.
19.
Ghorbani-Tanha
,
A. K.
,
Rahimian
,
M.
, and
Noorzad
,
A.
,
2011
, “
A Novel Semiactive Variable Stiffness Device and Its Application in a New Semiactive Tuned Vibration Absorber
,”
J. Eng. Mech.
,
137
(
6
), pp.
390
399
.
20.
Huyanan
,
S.
, and
Sims
,
N.
,
2007
, “
Vibration Control Strategies for Proof-Mass Actuators
,”
J. Vib. Control
,
13
(
12
), pp.
1785
1806
.
21.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
.
22.
Smith
,
M. C.
, and
Walker
,
G.
,
2000
, “
Performance Limitations and Constraints for Active and Passive Suspensions: A Mechanical Multi-Port Approach
,”
Veh. Syst. Dyn.
,
33
(
3
), pp.
137
168
.
23.
Rivin
,
E.
,
2003
,
Passive Vibration Isolation
,
The American Society of Mechanical Engineers
,
New York
.
24.
Wang
,
F.-C.
, and
Wu
,
S.-Y.
,
2014
, “
Vibration Control of an Optical Table Employing Mechatronic Inerter Networks
,”
J. Vib. Control
,
22
(
1
), pp.
224
234
.
25.
Li
,
C.
,
Liang
,
M.
,
Wang
,
Y.
, and
Dong
,
Y.
,
2012
, “
Vibration Suppression Using Two-Terminal Flywheel—Part I: Modeling and Characterization
,”
J. Vib. Control
,
18
(
8
), pp.
1096
1105
.
26.
Li
,
C.
,
Liang
,
M.
,
Wang
,
Y.
, and
Dong
,
Y.
,
2012
, “
Vibration Suppression Using Two-Terminal Flywheel—Part II: Application to Vehicle Passive Suspension
,”
J. Vib. Control
,
18
(
9
), pp.
1353
1365
.
27.
Li
,
C.
, and
Liang
,
M.
,
2012
, “
Characterization and Modeling of a Novel Electro-Hydraulic Variable Two-Terminal Mass Device
,”
Smart Mater. Struct.
,
21
(
2
), pp.
1
12
.
28.
Elliott
,
C. M.
,
Mintah
,
B.
, and
Lapen
,
D. A.
,
2009
, “
Variable Inertia Flywheel
,” U.S. Patent No. US2009/0320640 A1
29.
Xu
,
T.
,
2013
, “
Design and Analysis of a Shock Absorber With a Variable Moment of Inertia Flywheel for Passive Vehicle Suspension
,” M.Sc. thesis, University of Ottawa, Ottawa, ON, Canada.
30.
Nordin
,
M.
,
Galic’
,
J.
, and
Gutman
,
P.-O.
,
1997
, “
New Models for Backlash and Gear Play
,”
Int. J. Adapt. Control Signal Process.
,
11
(
1
), pp.
49
63
.
You do not currently have access to this content.