Trial and error experiments are the dominant approaches to select machining settings and also cutting system design in face-hobbing of bevel gears. These time-consuming experimental tests impose undesired costs to industries. In the present paper, an integrated method is proposed to find optimum machining settings in face-hobbing based on minimum machining time and allowable cutting force and tool wear. Cutting blades in face-hobbing are converted to many infinitesimal oblique elements along the cutting edge, and the cutting forces and the tool wear are predicted on all these small elements. The constructed optimization problem seeks a face-hobbing scenario with minimum plunge time which meets the cutting force or crater wear depth constraints. The proposed method is applied in two case studies successfully to show the capability of the approach.

References

References
1.
Usui
,
E.
,
Shirakashi
,
S.
, and
Kitagawa
,
T.
,
1984
, “
Analytical Prediction of Tool Wear
,”
Wear
,
100
(
1–3
), pp.
129
151
.
2.
Wang
,
M.
,
Ken
,
T.
,
Du
,
S.
, and
Xi
,
L.
,
2015
, “
Tool Wear Monitoring of Wiper Inserts in Multi-Insert Face Milling Using Three-Dimensional Surface Form Indicators
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031006
.
3.
Li
,
B.
,
2012
, “
A Review of Tool Wear Estimation Using Theoretical Analysis and Numerical Simulation Technologies
,”
Int. J. Refract. Met. Hard Mater.
,
35
(1), pp.
143
151
.
4.
Yen
,
Y.
,
Söhner
,
J.
,
Lilly
,
B.
, and
Altan
,
T.
,
2004
, “
Estimation of Tool Wear in Orthogonal Cutting Using the Finite Element Analysis
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
82
91
.
5.
Attanasio
,
A. A.
,
Ceretti
,
E. E.
,
Giardini
,
C. C.
, and
Cappellini
,
C. C.
,
2013
, “
Tool Wear in Cutting Operations: Experimental Analysis and Analytical Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051012
.
6.
Attanasio
,
A.
,
Ceretti
,
E.
,
Fiorentino
,
A.
,
Cappellini
,
C.
, and
Giardini
,
C.
,
2010
, “
Investigation and FEM-Based Simulation of Tool Wear in Turning Operations With Uncoated Carbide Tools
,”
Wear
,
269
(
5–6
), pp.
344
350
.
7.
Kuttolamadom
,
M. A.
,
Laine
,
M. M.
, and
Kurfess
,
T. R.
,
2012
, “
On the Volumetric Assessment of Tool Wear in Machining Inserts With Complex Geometries—Part 1: Need, Methodology, and Standardization
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051002
.
8.
Kuttolamadom
,
M. A.
,
Laine
,
M. M.
,
Kurfess
,
T. R.
,
Burger
,
U.
, and
Bryan
,
A.
,
2012
, “
On the Volumetric Assessment of Tool Wear in Machining Inserts With Complex Geometries—Part II: Experimental Investigation and Validation on Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051003
.
9.
Binder
,
M.
,
Klocke
,
F.
, and
Lung
,
D.
,
2015
, “
Tool Wear Simulation of Complex Shaped Coated Cutting Tools
,”
Wear
,
330–331
(1), pp.
600
607
.
10.
Habibi
,
M.
, and
Chen
,
Z.
,
2015
, “
A New Approach to Blade Design With Constant Rake and Relief Angles for Face-Hobbing of Bevel Gears
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031005
.
11.
Habibi
,
M.
, and
Chen
,
Z.
,
2015
, “
A Semi-Analytical Approach to Un-Deformed Chip Boundary Theory and Cutting Force Prediction in Face-Hobbing of Bevel Gears
,”
Comput. Aided Des.
,
73
, pp.
53
65
.
12.
Habibi
,
M.
, and
Chen
,
Z.
,
2015
, “
An Accurate and Efficient Approach to Undeformed Chip Geometry in Face-Hobbing and Its Application in Cutting Force Prediction
,”
ASME J. Mech. Des.
,
138
(
2
), p.
023302
.
13.
Stadtfeld
,
H. J.
,
2014
,
Gleason Bevel Gear Technology: The Science of Gear Engineering and Modern Manufacturing Methods for Angular Transmissions
,
The Gleason Works
,
Rochester, NY
, Chap. 2, 7, and 10.
14.
Fan
,
Q.
,
2005
, “
Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1315
1327
.
15.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
, Chap. 2.
16.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051014
.
17.
Islam
,
C.
,
Lazoglu
,
I.
, and
Altintas
,
Y.
,
2015
, “
A Three-Dimensional Transient Thermal Model for Machining
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021003
.
18.
Ivester
,
R. W.
,
Kennedy
,
M.
,
Davies
,
M.
,
Stevenson
,
R.
,
Thiele
,
J.
,
Furness
,
R.
, and
Athavale
,
S.
,
2000
, “
Assessment of Machining Models: Progress Report
,”
Mach. Sci. Technol.
,
4
(
3
), pp.
511
538
.
19.
Lalwani
,
D. I.
,
Mehta
,
N. K.
, and
Jain
,
P. K.
,
2009
, “
Extension of Oxley's Predictive Machining Theory for Johnson and Cook Flow Stress Model
,”
J. Mater. Process. Technol.
,
209
(
12–13
), pp.
5305
5312
.
20.
Karpat
,
Y.
, and
Özel
,
T.
,
2006
, “
Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process—Part I: Predictions of Tool Forces, Stresses, and Temperature Distributions
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
435
444
.
21.
Iqbal
,
S. A.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
,
2007
, “
Characterization of Machining of AISI 1045 Steel Over a Wide Range of Cutting Speeds. Part 1: Investigation of Contact Phenomena
,”
Proc. Inst. Mech. Eng., Part B
,
221
(
5
), pp.
909
916
.
22.
MAL Manufacturing Automation Laboratories, Inc.,
2016
, “CUTPRO(R),” University of British Columbia (UBC), Vancouver, Canada.
23.
Gosselin, C.,
2016
, “HyGEARS V4.0,” Involute Simulation Softwares, Inc., Quebec, Canada.
You do not currently have access to this content.