Real-life design problems often require simultaneous optimization of multiple conflicting criteria resulting in a set of best trade-off solutions. This best trade-off set of solutions is referred to as Pareto optimal front (POF) in the outcome space. Obtaining the complete POF becomes impractical for problems where evaluation of each solution is computationally expensive. Such problems are commonly encountered in several fields, such as engineering, management, and scheduling. A practical approach in such cases is to construct suitable POF approximations, which can aid visualization, decision-making, and interactive optimization. In this paper, we propose a method to generate piecewise linear Pareto front approximation from a given set of N Pareto optimal outcomes. The approximations are represented using geometrical linear objects known as polytopes, which are formed by triangulating the given M-objective outcomes in a reduced (M1)-objective space. The proposed approach is hence referred to as projection-based Pareto interpolation (PROP). The performance of PROP is demonstrated on a number of benchmark problems and practical applications with linear and nonlinear fronts to illustrate its strengths and limitations. While being novel and theoretically interesting, PROP also improves on the computational complexity required in generating such approximations when compared with existing Pareto interpolation (PAINT) algorithm.

References

References
1.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
, Vol.
16
,
Wiley
,
Hoboken, NJ
.
2.
Hartikainen
,
M.
,
Miettinen
,
K.
, and
Wiecek
,
M. M.
,
2011
, “
Constructing a Pareto Front Approximation for Decision Making
,”
Math. Methods Oper. Res.
,
73
(
2
), pp.
209
234
.
3.
Miettinen
,
K.
,
Ruiz
,
F.
, and
Wierzbicki
,
A. P.
,
2008
, “
Introduction to Multiobjective Optimization: Interactive Approaches
,”
Multiobjective Optimization
(Lecture Notes in Computer Science), Vol.
5252
,
Springer
,
Berlin
, pp.
27
57
.
4.
Yang
,
J. B.
, and
Singh
,
M. G.
,
1994
, “
An Evidential Reasoning Approach for Multiple-Attribute Decision Making With Uncertainty
,”
IEEE Trans. Syst. Man Cybern.
,
24
(
1
), pp.
1
18
.
5.
Shan
,
S.
, and
Wang
,
G. G.
,
2005
, “
An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
866
874
.
6.
Ruzika
,
S.
, and
Wiecek
,
M. M.
,
2005
, “
Approximation Methods in Multiobjective Programming
,”
J. Optim. Theory Appl.
,
126
(
3
), pp.
473
501
.
7.
Lotov
,
A. V.
, and
Miettinen
,
K.
,
2008
, “
Visualizing the Pareto Frontier
,”
Multiobjective Optimization
, J. Branke, K. Deb, K. Miettinen, R. Slowinski, eds.
Springer
, Heidelberg, Germany, pp.
213
243
.
8.
Jahn
,
J.
, and
Merkel
,
A.
,
1992
, “
Reference Point Approximation Method for the Solution of Bicriterial Nonlinear Optimization Problems
,”
J. Optim. Theory Appl.
,
74
(
1
), pp.
87
103
.
9.
Schandl
,
B.
,
Klamroth
,
K.
, and
Wiecek
,
M. M.
,
2002
, “
Norm-Based Approximation in Multicriteria Programming
,”
Comput. Math. Appl.
,
44
(
7
), pp.
925
942
.
10.
Wiecek
,
M. M.
,
Chen
,
W.
, and
Zhang
,
J.
,
2001
, “
Piecewise Quadratic Approximation of the Non-Dominated Set for Bi-Criteria Programs
,”
J. Multi-Criteria Decis. Anal.
,
10
(
1
), pp.
35
47
.
11.
Monz
,
M.
,
2006
, “
Pareto Navigation–Interactive Multiobjective Optimisation and Its Application in Radiotherapy Planning
,” Ph.D. thesis, Department of Mathematics, Technical University of Kaiserslautern, Kaiserslautern, Germany.
12.
Eskelinen
,
P.
,
Miettinen
,
K.
,
Klamroth
,
K.
, and
Hakanen
,
J.
,
2010
, “
Pareto Navigator for Interactive Nonlinear Multiobjective Optimization
,”
OR Spectrum
,
32
(
1
), pp.
211
227
.
13.
Rasmus
,
B.
, and
Anders
,
F.
,
2013
, “
An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques
,”
INFORMS J. Comput.
,
25
(
2
), pp.
377
393
.
14.
Berezkin
,
V. E.
,
Kamenev
,
G. K.
, and
Lotov
,
A. V.
,
2006
, “
Hybrid Adaptive Methods for Approximating a Nonconvex Multidimensional Pareto Frontier
,”
Comput. Math. Math. Phys.
,
46
(
11
), pp.
1918
1931
.
15.
Hartikainen
,
M.
, and
Miettinen
,
K.
,
2010
, “
A Computationally Inexpensive Approach in Multiobjective Heat Exchanger Network Synthesis
,”
2nd International Conference on Applied Operational Research (ICAOR)
, Vol.
10
, pp.
99
109
.
16.
Hartikainen
,
M.
,
Miettinen
,
K.
, and
Wiecek
,
M. M.
,
2012
, “
PAINT: Pareto Front Interpolation for Nonlinear Multiobjective Optimization
,”
Comput. Optim. Appl.
,
52
(
3
), pp.
845
867
.
17.
Hartikainen
,
M.
, and
Ojalehto
,
V.
,
2011
, “
Demonstrating the Applicability of PAINT to Computationally Expensive Real-Life Multiobjective Optimization
,”
CoRR
, p. 1109.3411.
18.
Hartikainen
,
M.
, and
Lovison
,
A.
,
2014
, “
PAINT–SiCon: Constructing Consistent Parametric Representations of Pareto Sets in Nonconvex Multiobjective Optimization
,”
J. Global Optim.
,
62
(
2
), pp.
243
261
.
19.
Martín
,
J.
,
Bielza
,
C.
, and
Insua
,
D. R.
,
2005
, “
Approximating Nondominated Sets in Continuous Multiobjective Optimization Problems
,”
Nav. Res. Logist.
,
52
(
5
), pp.
469
480
.
20.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
21.
Isaacs
,
A.
,
Ray
,
T.
, and
Smith
,
W.
,
2009
, “
Multi-Objective Design Optimisation Using Multiple Adaptive Spatially Distributed Surrogates
,”
Int. J. Prod. Dev.
,
9
(
1–3
), pp.
188
217
.
22.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.
23.
Cochocki
,
A.
, and
Unbehauen
,
R.
,
1993
,
Neural Networks for Optimization and Signal Processing
,
Wiley
, Hoboken, NJ.
24.
Deb
,
K.
,
Thiele
,
L.
,
Laumanns
,
M.
, and
Zitzler
,
E.
,
2002
, “
Scalable Multi-Objective Optimization Test Problems
,”
IEEE Congress Evol. Comput.
,
1
, pp.
825
830
.
25.
Huband
,
S.
,
Hingston
,
P.
,
Barone
,
L.
, and
While
,
L.
,
2006
, “
A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit
,”
IEEE Trans. Evol. Comput.
,
10
(
5
), pp.
477
506
.
26.
Vlennet
,
R.
,
Fonteix
,
C.
, and
Marc
,
I.
,
1996
, “
Multicriteria Optimization Using a Genetic Algorithm for Determining a Pareto Set
,”
Int. J. Syst. Sci.
,
27
(
2
), pp.
255
260
.
27.
Eyvindson
,
K.
,
Hartikainen
,
M.
, and
Kurttila
,
M.
,
2013
, “
Towards Constructing a Pareto Front Approximation for Use in Interactive Forest Management Planning
,”
Implementation of DSS Tools into the Forestry Practice: Reviewed Conference Proceedings
, Technical University in Zvolen, Zvolen, Slovakia, pp. 83–91.
28.
Vaidyanathan
,
R.
,
Tucker
,
P. K.
,
Papila
,
N.
, and
Shyy
,
W.
,
2004
, “
Computational-Fluid-Dynamics-Based Design Optimization for Single-Element Rocket Injector
,”
J. Propul. Power
,
20
(
4
), pp.
705
717
.
29.
Goel
,
T.
,
Vaidyanathan
,
R.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Queipo
,
N. V.
, and
Tucker
,
K.
,
2007
, “
Response Surface Approximation of Pareto Optimal Front in Multi-Objective Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
4
), pp.
879
893
.
30.
Hakanen
,
J.
,
Miettinen
,
K.
, and
Sahlstedt
,
K.
,
2011
, “
Wastewater Treatment: New Insight Provided by Interactive Multiobjective Optimization
,”
Decis. Support Syst.
,
51
(
2
), pp.
328
337
.
31.
Laukkanen
,
T.
,
Tveit
,
T.-M.
,
Ojalehto
,
V.
,
Miettinen
,
K.
, and
Fogelholm
,
C.-J.
,
2010
, “
An Interactive Multi-Objective Approach to Heat Exchanger Network Synthesis
,”
Comput. Chem. Eng.
,
34
(
6
), pp.
943
952
.
You do not currently have access to this content.