In engineering design optimization, evaluation of a single solution (design) often requires running one or more computationally expensive simulations. Surrogate assisted optimization (SAO) approaches have long been used for solving such problems, in which approximations/surrogates are used in lieu of computationally expensive simulations during the course of search. Existing SAO approaches often use the same type of approximation model to represent all objectives and constraints in all regions of the search space. The selection of a type of surrogate model over another is nontrivial and an a priori choice limits flexibility in representation. In this paper, we introduce a multi-objective evolutionary algorithm (EA) with multiple adaptive spatially distributed surrogates. Instead of a single global surrogate, local surrogates of multiple types are constructed in the neighborhood of each offspring solution and a multi-objective search is conducted using the best surrogate for each objective and constraint function. The proposed approach offers flexibility of representation by capitalizing on the benefits offered by various types of surrogates in different regions of the search space. The approach is also immune to illvalidation since approximated and truly evaluated solutions are not ranked together. The performance of the proposed surrogate assisted multi-objective algorithm (SAMO) is compared with baseline nondominated sorting genetic algorithm II (NSGA-II) and NSGA-II embedded with global and local surrogates of various types. The performance of the proposed approach is quantitatively assessed using several engineering design optimization problems. The numerical experiments demonstrate competence and consistency of SAMO.

References

References
1.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
2.
Jin
,
Y.
,
2005
, “
A Comprehensive Survey of Fitness Approximation in Evolutionary Computation
,”
Soft Comput. Fusion Found. Methodol. Appl.
,
9
(
1
), pp.
3
12
.
3.
Wilson
,
B.
,
Cappelleri
,
D.
,
Simpson
,
T. W.
, and
Frecker
,
M.
,
2001
, “
Efficient Pareto Frontier Exploration Using Surrogate Approximations
,”
Optim. Eng.
,
2
(
1
), pp.
31
50
.
4.
Goel
,
T.
,
Haftka
,
R. T.
,
Shyy
,
W.
, and
Queipo
,
N. V.
,
2007
, “
Ensemble of Surrogates
,”
Struct. Multidiscip. Optim.
,
33
(
3
), pp.
199
216
.
5.
Zhou
,
Z.
,
Ong
,
Y. S.
,
Nair
,
P. B.
,
Keane
,
A. J.
, and
Lum
,
K. Y.
,
2007
, “
Combining Global and Local Surrogate Models to Accelerate Evolutionary Optimization
,”
IEEE Trans. Syst. Man Cybern. Part C
,
37
(
1
), pp.
66
76
.
6.
Wang
,
G. G.
, and
Simpson
,
T. W.
,
2004
, “
Fuzzy Clustering Based Hierarchical Metamodeling for Space Reduction and Design Optimization
,”
J. Eng. Optim.
,
36
(
3
), pp.
313
335
.
7.
Breiman
,
L.
,
1996
, “
Bagging Predictors
,”
Mach. Learn.
,
24
(
2
), pp.
123
140
.
8.
Abney
,
S.
,
Schapire
,
R. E.
, and
Singer
,
Y.
,
1999
, “
Boosting Applied to Tagging and pp Attachment
,”
Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora
, University of Maryland, College Park, MD.
9.
Acar
,
E.
,
2010
, “
Various Approaches for Constructing an Ensemble of Metamodels Using Local Measures
,”
Struct. Multidiscip. Optim.
,
42
(
6
), pp.
879
896
.
10.
Zhao
,
Y.
,
Gao
,
J.
, and
Yang
,
X.
,
2005
, “
A Survey of Neural Network Ensembles
,”
International Conference on Neural Networks and Brain
, Beijing, China, Vol.
1
, pp.
438
442
.
11.
Zerpa
,
L. E.
,
Queipo
,
N. V.
,
Pintos
,
S.
, and
Salager
,
J. L.
,
2005
, “
An Optimization Methodology of Alkaline-Surfactant-Polymer Flooding Processes Using Field Scale Numerical Simulation and Multiple Surrogates
,”
J. Pet. Sci. Eng.
,
47
(
3–4
), pp.
197
208
.
12.
Hamza
,
K.
, and
Saitou
,
K.
,
2012
, “
A Co-evolutionary Approach for Design Optimization Via Ensembles of Surrogates with Application to Vehicle Crashworthiness
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011001
.
13.
Glaz
,
B.
,
Goel
,
T.
,
Liu
,
L.
,
Friedmann
,
P. P.
, and
Haftka
,
R. T.
,
2009
, “
Multiple-Surrogate Approach to Helicopter Rotor Blade Vibration Reduction
,”
AIAA J.
,
47
(
1
), pp.
271
282
.
14.
Mack
,
Y.
,
Goel
,
T.
,
Shyy
,
W.
,
Haftka
,
R. T.
, and
Queipo
,
N. V.
,
2005
, “
Multiple Surrogates for the Shape Optimization of Bluff Body-Facilitated Mixing
,”
AIAA
Paper No. 2005-333.
15.
Goel
,
T.
,
Haftka
,
R. T.
,
Queipo
,
N. V.
, and
Shyy
,
W.
,
2006
, “
Performance Estimate and Simultaneous Application of Multiple Surrogates
,”
AIAA
Paper No. 2006-7047.
16.
Zhou
,
Z.
,
Ong
,
Y. S.
,
Lim
,
M. H.
, and
Lee
,
B. S.
,
2007
, “
Memetic Algorithm Using Multi-Surrogates for Computationally Expensive Optimization Problems
,”
Soft Comput. Fusion Found. Methodol. Appl.
,
11
(
10
), pp.
957
971
.
17.
Nain
,
P.
, and
Deb
,
K.
,
2002
, “
A Computationally Effective Multi-Objective Search and Optimization Techniques Using Coarse-To-Fine Grain Modeling
,” Workshop on Evolutionary Multiobjective Optimization, Parallel Problem Solving From Nature, Granada, Spain.
18.
Ray
,
T.
, and
Smith
,
W.
,
2006
, “
Surrogate Assisted Evolutionary Algorithm for Multiobjective Optimization
,”
International Conference on AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
, Newport, RI, pp.
1
8
.
19.
Knowles
,
J.
,
2006
, “
ParEGO: A Hybrid Algorithm With On-Line Landscape Approximation for Expensive Multiobjective Optimization Problems
,”
IEEE Trans. Evol. Comput.
,
10
(
1
), pp.
50
66
.
20.
Chafekar
,
D.
,
Shi
,
L.
,
Rasheed
,
K.
, and
Xuan
,
J.
,
2005
. “
Multiobjective GA Optimization Using Reduced Models
,”
IEEE Trans. Syst. Man Cybern., Part C
,
35
(
2
), pp.
261
265
.
21.
Zhang
,
J.
,
Chowdhury
,
S.
,
Mehmani
,
A.
, and
Messac
,
A.
,
2012
, “
Uncertainty Quantification in Surrogate Models Based on Pattern Classification of Cross-Validation Errors
,”
AIAA
Paper No. 2012-5437.
22.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
23.
Zitzler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.
24.
Zitzler
,
E.
,
Thiele
,
L.
,
Laumanns
,
M.
,
Fonseca
,
C.
, and
da Fonseca
,
V.
,
2003
, “
Performance Assessment of Multiobjective Optimizers: An Analysis and Review
,”
IEEE Trans. Evol. Comput.
,
7
(
2
), pp.
117
132
.
25.
Barbosa
,
H.
,
Bernardino
,
H.
, and
Barreto
,
A.
,
2010
, “
Using Performance Profiles to Analyze the Results of the 2006 CEC Constrained Optimization Competition
,”
IEEE Congress on Evolutionary Computation
, Barcelona, Spain, pp.
1
8
.
26.
Dolan
,
E. D.
, and
Moré
,
J. J.
,
2002
, “
Benchmarking Optimization Software With Performance Profiles
,”
Math. Program.
,
91
(
2
), pp.
201
213
.
27.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
,
2000
, “
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
,”
Evol. Comput.
,
8
(
2
), pp.
173
195
.
28.
Deb
,
K.
,
2000
, “
An Efficient Constraint Handling Method for Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
186
(
2–4
), pp.
311
338
.
29.
Cus
,
F.
, and
Balic
,
J.
,
2003
, “
Optimization of Cutting Process by GA Approach
,”
Rob. Comput. Integr. Manuf.
,
19
(
1–2
), pp.
113
121
.
30.
Sardiñas
,
R. Q.
,
Santana
,
M. R.
, and
Brindis
,
E. A.
,
2006
, “
Genetic Algorithm-Based Multi-Objective Optimization of Cutting Parameters in Turning Processes
,”
Eng. Appl. Artif. Intell.
,
19
(
2
), pp.
127
133
.
31.
Tan
,
K.
,
Lee
,
T.
, and
Khor
,
E.
,
2001
, “
Evolutionary Algorithms With Dynamic Population Size and Local Exploration for Multiobjective Optimization
,”
IEEE Trans. Evol. Comput.
,
5
(
6
), pp.
565
588
.
32.
Deb
,
K.
, and
Datta
,
R.
,
2012
, “
Hybrid Evolutionary Multi-Objective Optimization and Analysis of Machining Operations
,”
Eng. Optim.
,
44
(
6
), pp.
685
706
.
33.
Shiau
,
C. S. N.
,
Nikhil
,
K.
,
Hendrickson
,
C. T.
,
Peterson
,
S. B.
,
Whitacre
,
J. F.
, and
Michalek
,
J. J.
,
2010
, “
Optimal Plug-In Hybrid Electric Vehicle Design and Allocation for Minimum Life Cycle Cost, Petroleum Consumption, and Greenhouse Gas Emissions
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091013
.
34.
Liao
,
X.
,
Li
,
Q.
,
Yang
,
X.
,
Zhang
,
W.
, and
Li
,
W.
,
2008
, “
Multiobjective Optimization for Crash Safety Design of Vehicles Using Stepwise Regression Model
,”
Struct. Multidiscip. Optim.
,
35
(
6
), pp.
561
569
.
35.
Sen
,
P.
, and
Yang
,
J. B.
,
1998
,
Multiple Criteria Decision Support in Engineering Design
,
Springer
,
London
.
36.
Augusto
,
O. B.
,
Bennis
,
F.
, and
Caro
,
S.
,
2012
, “
A New Method for Decision Making in Multi-Objective Optimization Problems
,”
Pesqui. Operacional
,
32
(
2
), pp.
331
369
.
37.
Bhattacharjee
,
K. S.
,
Singh
,
H. K.
, and
Ray
,
T.
,
2016
, “
Surrogate Assisted Multi-Objective Optimization (SAMO) Code and Instructions
,” http://www.mdolab.net/Ray/Research-Data/SAMO_JMD.zip, Multidisciplinary Optimization Group, UNSW Canberra, Australia.
You do not currently have access to this content.