New opportunities in design surface with scientific advances: however, the rapid pace of scientific discoveries combined with the complexity of technical barriers often impedes new product development. Bio-based technologies, for instance, typically require decisions across complex multiscale system organizations that are difficult for humans to understand and formalize computationally. This paper addresses such challenges in science and design by weaving phases of empirical discovery, analytical description, and technological development in an integrative “D3 Methodology.” The phases are bridged with human-guided computational processes suitable for human-in-the-loop design approaches. Optimization of biolibraries, which are sets of standardized biological parts for adaptation into new products, is used as a characteristic design problem for demonstrating the methodology. Results from this test case suggest that biolibraries with synthetic biological components can promote the development of high-performance bio-based products. These new products motivate further scientific studies to characterize designed synthetic biological components, thus illustrating reciprocity among science and design. Successes in implementing each phase suggest the D3 Methodology is a feasible route for bio-based research and development and for driving the scientific inquiries of today toward the novel technologies of tomorrow.

References

References
1.
Cheong
,
H.
, and
Shu
,
L.
,
2014
, “
Retrieving Causally Related Functions From Natural-Language Text for Biomimetic Design
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081008
.
2.
Fu
,
K.
,
Moreno
,
D.
,
Yang
,
M.
, and
Wood
,
K.
,
2014
, “
Bio-Inspired Design: An Overview Investigating Open Questions From the Broader Field of Design-By-Analogy
,”
ASME J. Mech. Des.
, 136(11), p. 111102.
3.
Nagel
,
J. K.
,
Nagel
,
R. L.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2010
, “
Function-Based, Biologically Inspired Concept Generation
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
24
(
04
), pp.
521
535
.
4.
Goel
,
A. K.
,
Vattam
,
S.
,
Wiltgen
,
B.
, and
Helms
,
M.
,
2012
, “
Cognitive, Collaborative, Conceptual and Creative—Four Characteristics of the Next Generation of Knowledge-Based CAD Systems: A Study in Biologically Inspired Design
,”
Comput.-Aided Des.
,
44
(
10
), pp.
879
900
.
5.
Vandevenne
,
D.
,
Verhaegen
,
P.-A.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2015
, “
A Scalable Approach for Ideation in Biologically Inspired Design
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
29
(
01
), pp.
19
31
.
6.
Cohen
,
Y. H.
,
Reich
,
Y.
, and
Greenberg
,
S.
,
2014
, “
Biomimetics: Structure–Function Patterns Approach
,”
ASME J. Mech. Des.
,
136
(
11
), p.
111108
.
7.
Cheng
,
A. A.
, and
Lu
,
T. K.
,
2012
, “
Synthetic Biology: An Emerging Engineering Discipline
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
155
178
.
8.
Nawroth
,
J. C.
,
Lee
,
H.
,
Feinberg
,
A. W.
,
Ripplinger
,
C. M.
,
McCain
,
M. L.
,
Grosberg
,
A.
,
Dabiri
,
J. O.
, and
Parker
,
K. K.
,
2012
, “
A Tissue-Engineered Jellyfish With Biomimetic Propulsion
,”
Nat. Biotechnol.
,
30
(
8
), pp.
792
797
.
9.
Pawelzik
,
P.
,
Carus
,
M.
,
Hotchkiss
,
J.
,
Narayan
,
R.
,
Selke
,
S.
,
Wellisch
,
M.
,
Weiss
,
M.
,
Wicke
,
B.
, and
Patel
,
M. K.
,
2013
, “
Critical Aspects in the Life Cycle Assessment (LCA) of Bio-Based Materials–Reviewing Methodologies and Deriving Recommendations
,”
Resour., Conserv. Recycl.
,
73
, pp.
211
228
.
10.
Becker
,
J.
, and
Wittmann
,
C.
,
2012
, “
Bio-Based Production of Chemicals, Materials and Fuels–Corynebacterium Glutamicum as Versatile Cell Factory
,”
Curr. Opin. Biotechnol.
,
23
(
4
), pp.
631
640
.
11.
Weber
,
W.
, and
Fussenegger
,
M.
,
2011
, “
Emerging Biomedical Applications of Synthetic Biology
,”
Nat. Rev. Genet.
,
13
, pp.
21
35
.
12.
Dababneh
,
A. B.
, and
Ozbolat
,
I. T.
,
2014
, “
Bioprinting Technology: A Current State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061016
.
13.
Slusarczyk
,
A. L.
,
Lin
,
A.
, and
Weiss
,
R.
,
2012
, “
Foundations for the Design and Implementation of Synthetic Genetic Circuits
,”
Nat. Rev. Genet.
,
13
(
6
), pp.
406
420
.
14.
Egan
,
P.
,
Sinko
,
R.
,
LeDuc
,
P.
, and
Keten
,
S.
,
2015
, “
The Role of Mechanics in Biological and Synthetic Bioinspired Systems
,”
Nat. Commun.
,
6
, p. 7418.
15.
Egan
,
P.
,
Cagan
,
J.
,
Schunn
,
C.
, and
LeDuc
,
P.
,
2013
, “
Design of Complex Biologically Based Nanoscale Systems Using Multi-Agent Simulations and Structure-Behavior-Function Representations
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061005
.
16.
Egan
,
P.
,
Moore
,
J.
,
Schunn
,
C.
,
Cagan
,
J.
, and
LeDuc
,
P.
,
2015
, “
Emergent Systems Energy Laws for Predicting Myosin Ensemble Processivity
,”
PLoS Comput. Biol.
,
11
(4), p. e1004177.
17.
Egan
,
P.
,
Cagan
,
J.
,
Schunn
,
C.
, and
LeDuc
,
P.
,
2015
, “
Synergistic Human-Agent Methods for Deriving Effective Search Strategies: The Case of Nanoscale Design
,”
Res. Eng. Des.
,
26
(2), pp. 145–169.
18.
Egan
,
P.
,
Schunn
,
C.
,
Cagan
,
J.
, and
LeDuc
,
P.
,
2015
, “
Improving Human Understanding and Design of Complex Multi-Level Systems With Animation and Parametric Relationship Supports
,”
Des. Sci.
,
e3
.
19.
Howard
,
J.
,
2001
,
Mechanics of Motor Proteins and the Cytoskeleton
,
Sinauer Associates
,
Sunderland, MA
.
20.
Hodges
,
A. R.
,
Krementsova
,
E. B.
, and
Trybus
,
K. M.
,
2007
, “
Engineering the Processive Run Length of Myosin V
,”
J. Biol. Chem.
,
282
(
37
), pp.
27192
27197
.
21.
Smolke
,
C. D.
, and
Silver
,
P. A.
,
2011
, “
Informing Biological Design by Integration of Systems and Synthetic Biology
,”
Cell
,
144
(
6
), pp.
855
859
.
22.
Vattam
,
S. S.
,
Goel
,
A. K.
,
Rugaber
,
S.
,
Hmelo-Silver
,
C. E.
,
Jordan
,
R.
,
Gray
,
S.
, and
Sinha
,
S.
,
2011
, “
Understanding Complex Natural Systems by Articulating Structure-Behavior-Function Models
,”
Educ. Technol. Soc., Special Issue on Creative Design
,
14
(1), pp.
66
81
.
23.
Togashi
,
Y.
,
Yanagida
,
T.
, and
Mikhailov
,
A. S.
,
2010
, “
Nonlinearity of Mechanochemical Motions in Motor Proteins
,”
PLoS Comput. Biol.
,
6
(
6
), p.
e1000814
.
24.
Marcucci
,
L.
, and
Yanagida
,
T.
,
2012
, “
From Single Molecule Fluctuations to Muscle Contraction: A Brownian Model of AF Huxley's Hypotheses
,”
PloS One
,
7
(
7
), p.
e40042
.
25.
Simpson
,
T. W.
, and
Martins
,
J. R.
,
2011
, “
Multidisciplinary Design Optimization for Complex Engineered Systems: Report From a National Science Foundation Workshop
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101002
.
26.
Simpson
,
T. W.
,
Carlsen
,
D.
,
Malone
,
M.
, and
Kollat
,
J.
,
2011
, “
Trade Space Exploration: Assessing the Benefits of Putting Designers ‘Back-in-the-Loop’ During Engineering Optimization
,”
Human-in-the-Loop Simulations
,
Springer
, Heidelberg, Germany, pp.
131
152
.
27.
Kell
,
D. B.
, and
Oliver
,
S. G.
,
2004
, “
Here is the Evidence, Now What is the Hypothesis? The Complementary Roles of Inductive and Hypothesis-Driven Science in the Post-Genomic Era
,”
Bioessays
,
26
(
1
), pp.
99
105
.
28.
Galle
,
P.
, and
Kroes
,
P.
,
2014
, “
Science and Design: Identical Twins?
,”
Des. Stud.
,
35
(
3
), pp.
201
231
.
29.
Dorst
,
K.
,
2011
, “
The Core of ‘Design Thinking’ and Its Application
,”
Des. Stud.
,
32
(
6
), pp.
521
532
.
30.
Smolke
,
C. D.
,
2009
, “
Building Outside of the Box: iGEM and the BioBricks Foundation
,”
Nat. Biotechnol.
,
27
(
12
), pp.
1099
1102
.
31.
Galdzicki
,
M.
,
Rodriguez
,
C.
,
Chandran
,
D.
,
Sauro
,
H. M.
, and
Gennari
,
J. H.
,
2011
, “
Standard Biological Parts Knowledgebase
,”
PloS One
,
6
(
2
), p.
e17005
.
32.
Cooling
,
M. T.
,
Rouilly
,
V.
,
Misirli
,
G.
,
Lawson
,
J.
,
Yu
,
T.
,
Hallinan
,
J.
, and
Wipat
,
A.
,
2010
, “
Standard Virtual Biological Parts: A Repository of Modular Modeling Components for Synthetic Biology
,”
Bioinformatics
,
26
(
7
), pp.
925
931
.
33.
Luo
,
X.
,
Li
,
W.
,
Kwong
,
C.
, and
Cao
,
Y.
,
2016
, “
Optimisation of Product Family Design With Consideration of Supply Risk and Discount
,”
Res. Eng. Des.
,
27
(
1
), pp.
37
54
.
34.
Farrell
,
R.
, and
Hooker
,
C.
,
2012
, “
The Simon–Kroes Model of Technical Artifacts and the Distinction Between Science and Design
,”
Des. Stud.
,
33
(
5
), pp.
480
495
.
35.
Barnes
,
C. P.
,
Silk
,
D.
,
Sheng
,
X.
, and
Stumpf
,
M. P.
,
2011
, “
Bayesian Design of Synthetic Biological Systems
,”
Proc. Natl. Acad. Sci.
,
108
(
37
), pp.
15190
15195
.
36.
Farrell
,
R.
, and
Hooker
,
C.
,
2015
, “
Designing and Sciencing: Response to Galle and Kroes
,”
Des. Stud.
,
37
, pp.
1
11
.
37.
Cagan
,
J.
,
Kotovsky
,
K.
, and
Simon
,
H. A.
,
2005
, “
Scientific Discovery and Inventive Engineering Design
,”
Formal Engineering Design Synthesis
, Cambridge University Press, New York, pp.
442
465
.
38.
Munch
,
E.
,
Launey
,
M. E.
,
Alsem
,
D. H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2008
, “
Tough, Bio-Inspired Hybrid Materials
,”
Science
,
322
(
5907
), pp.
1516
1520
.
39.
Spatz
,
J. P.
,
2005
, “
Bio-MEMS: Building up Micromuscles
,”
Nat. Mater.
,
4
(
2
), pp.
115
116
.
40.
Cvetkovic
,
C.
,
Raman
,
R.
,
Chan
,
V.
,
Williams
,
B. J.
,
Tolish
,
M.
,
Bajaj
,
P.
,
Sakar
,
M. S.
,
Asada
,
H. H.
,
Saif
,
M. T. A.
, and
Bashir
,
R.
,
2014
, “
Three-Dimensionally Printed Biological Machines Powered by Skeletal Muscle
,”
Proc. Natl. Acad. Sci.
,
111
(
28
), pp.
10125
10130
.
41.
Koenderink
,
G. H.
,
Dogic
,
Z.
,
Nakamura
,
F.
,
Bendix
,
P. M.
,
MacKintosh
,
F. C.
,
Hartwig
,
J. H.
,
Stossel
,
T. P.
, and
Weitz
,
D. A.
,
2009
, “
An Active Biopolymer Network Controlled by Molecular Motors
,”
PNAS
,
106
(
36
), pp.
15192
15197
.
42.
Neiman
,
V. J.
, and
Varghese
,
S.
,
2011
, “
Synthetic Bio-Actuators and Their Applications in Biomedicine
,”
Smart Struct. Syst.
,
7
(
3
), pp.
185
198
.
43.
Ayala
,
F. J.
,
2007
, “
Darwin's Greatest Discovery: Design Without Designer
,”
Proc. Natl. Acad. Sci.
,
104
(1), pp.
8567
8573
.
44.
Bölker
,
M.
,
2015
, “
Complexity in Synthetic Biology: Unnecessary or Essential?
,”
Synthetic Biology
,
Springer
, Heidelberg, Germany, pp.
59
69
.
45.
Miller
,
G. A.
,
1956
, “
The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information
,”
Psychol. Rev.
,
63
(
2
), p.
81
.
46.
Hirschi
,
N.
, and
Frey
,
D.
,
2002
, “
Cognition and Complexity: An Experiment on the Effect of Coupling in Parameter Design
,”
Res. Eng. Des.
,
13
(3), pp.
123
131
.
47.
Hess
,
H.
,
2011
, “
Engineering Applications of Biomolecular Motors
,”
Annu. Rev. Biomed. Eng.
,
13
(
1
), pp.
429
450
.
48.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2003
, “
The Situated Function-Behaviour-Structure Framework
,”
Des. Stud.
,
25
(4), pp.
373
391
.
49.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
23
(
01
), pp.
23
35
.
50.
Eastman
,
C. M.
,
1982
, “
Recent Developments in Representation in the Science of Design
,”
Des. Stud.
,
3
(
1
), pp.
45
52
.
51.
Björklund
,
T. A.
,
2013
, “
Initial Mental Representations of Design Problems: Differences Between Experts and Novices
,”
Des. Stud.
,
34
(
2
), pp.
135
160
.
52.
Hwang
,
M.
,
Garbey
,
M.
,
Berceli
,
S. A.
, and
Tran-Son-Tay
,
R.
,
2009
, “
Rule-Based Simulation of Multi-Cellular Biological Systems—A Review of Modeling Techniques
,”
Cell. Mol. Bioeng.
,
2
(
3
), pp.
285
294
.
53.
Michael
,
S.
,
Faeder
,
J.
, and
Emonet
,
T.
,
2011
, “
Efficient Modeling, Simulation and Coarse-Graining of Biological Complexity With NFsim
,”
Nat. Methods
,
8
(2), pp.
177
183
.
54.
Bongard
,
J.
, and
Lipson
,
H.
,
2007
, “
Automated Reverse Engineering of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
104
(
24
), pp.
9943
9948
.
55.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
.
56.
Gay
,
G.
,
Menzies
,
T.
,
Davies
,
M.
, and
Gundy-Burlet
,
K.
,
2010
, “
Automatically Finding the Control Variables for Complex System Behavior
,”
Autom. Software Eng.
,
17
(
4
), pp.
439
468
.
57.
Resnicow
,
D. I.
,
Deacon
,
J. C.
,
Warrick
,
H. M.
,
Spudich
,
J. A.
, and
Leinwand
,
L. A.
,
2010
, “
Functional Diversity Among a Family of Human Skeletal Muscle Myosin Motors
,”
PNAS
,
107
(
3
), pp.
1053
1058
.
58.
Tsiavaliaris
,
G.
,
Fujita-Becker
,
S.
, and
Manstein
,
D. J.
,
2004
, “
Molecular Engineering of a Backwards-Moving Myosin Motor
,”
Nature
,
427
(
6974
), pp.
558
561
.
59.
Campbell
,
M. I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
1999
, “
A-Design: An Agent-Based Approach to Conceptual Design in a Dynamic Environment
,”
Res. Eng. Des.
,
11
(
3
), pp.
172
192
.
60.
Landry
,
L.
, and
Cagan
,
J.
,
2011
, “
Protocol-Based Multi-Agent Systems: Examining the Effect of Diversity, Dynamism, and Cooperation in Heuristic Optimization Approaches
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021001
.
61.
Ito
,
K.
,
Ikebe
,
M.
,
Kashiyama
,
T.
,
Mogami
,
T.
,
Kon
,
T.
, and
Yamamoto
,
K.
,
2007
, “
Kinetic Mechanism of the Fastest Motor Protein, Chara Myosin
,”
J. Biol. Chem.
,
282
(
27
), pp.
19534
19545
.
62.
Taniguchi
,
M.
,
Okamoto
,
R.
,
Ito
,
M.
,
Goto
,
I.
,
Fujita
,
S.
,
Konishi
,
K.
,
Mizutani
,
H.
,
Dohi
,
K.
,
Hartshorne
,
D. J.
, and
Itoh
,
T.
,
2015
, “
New Isoform of Cardiac Myosin Light Chain Kinase and the Role of Cardiac Myosin Phosphorylation in α 1-Adrenoceptor Mediated Inotropic Response
,”
PLoS One
,
10
(
10
), p.
e0141130
.
63.
Work
,
S.
, and
Warshaw
,
D.
,
1991
, “
Computer-Assisted Tracking of Actin Filament Motility
,”
Anal. Biochem.
,
202
(2), pp.
275
285
.
64.
Marston
,
S.
,
Fraser
,
I.
,
Bing
,
W.
, and
Roper
,
G.
,
1996
, “
A Simple Method for Automatic Tracking of Actin Filaments in the Motility Assay
,”
J. Muscle Res. Cell Motil.
,
17
(
4
), pp.
497
506
.
65.
Meijering
,
E.
,
Dzyubachyk
,
O.
, and
Smal
,
I.
,
2012
, “
Methods for Cell and Particle Tracking
,”
Methods Enzymol.
,
504
, pp.
183
200
.
66.
Greenberg
,
M. J.
, and
Moore
,
J.
,
2010
, “
The Molecular Basis of Frictional Loads in the In Vitro Motility Assay With Applications to the Study of the Loaded Mechanochemistry of Molecular Motors
,”
Cytoskeleton
,
67
(
5
), pp.
273
285
.
67.
Saunders
,
M. G.
, and
Voth
,
G. A.
,
2013
, “
Coarse-Graining Methods for Computational Biology
,”
Annu. Rev. Biophys.
,
42
(
1
), pp.
73
93
.
68.
Egan
,
P.
,
Cagan
,
J.
,
Schunn
,
C.
,
LeDuc
,
P.
,
Moore
,
J.
, and
Chiu
,
F.
,
2015
, “
The d3 Science-to-Design Methodology: Automated and Cognitive-Based Processes for Discovering, Describing, and Designing Complex Nanomechanical Biosystems
,”
ASME
Paper No. DETC2015-47466.
69.
Ferrer
,
J. M.
,
Lee
,
H.
,
Chen
,
J.
,
Pelz
,
B.
,
Nakamura
,
F.
,
Kamm
,
R. D.
, and
Lang
,
M. J.
,
2008
, “
Measuring Molecular Rupture Forces Between Single Actin Filaments and Actin-Binding Proteins
,”
Proc. Natl. Acad. Sci.
,
105
(
27
), pp.
9221
9226
.
70.
Harris
,
D. E.
,
Work
,
S. S.
,
Wright
,
R. K.
,
Alpert
,
N. R.
, and
Warshaw
,
D. M.
,
1994
, “
Smooth, Cardiac and Skeletal Muscle Myosin Force and Motion Generation Assessed by Cross-Bridge Mechanical Interactions In Vitro
,”
J. Muscle Res. Cell Motil.
,
15
(
1
), pp.
11
19
.
71.
Mesmer
,
B. L.
, and
Bloebaum
,
C. L.
,
2015
, “
An End-User Decision Model With Information Representation for Improved Performance and Robustness in Complex System Design
,”
Res. Eng. Des.
, 26(3), pp.
233
251
.
72.
Daniels
,
B.
,
Chen
,
Y.
,
Sethna
,
J.
,
Gutenkunst
,
R.
, and
Myers
,
C.
,
2008
, “
Sloppiness, Robustness, and Evolvability in Systems Biology
,”
Curr. Opin. Biotechnol.
,
19
(
4
), pp.
389
395
.
73.
Schwartz
,
B.
,
Ben-Haim
,
Y.
, and
Dacso
,
C.
,
2011
, “
What Makes a Good Decision? Robust Satisficing as a Normative Standard of Rational Decision Making
,”
J. Theory Soc. Behav.
,
41
(
2
), pp.
209
227
.
74.
Randall
,
D.
,
Burggren
,
W.
, and
French
,
K.
,
2001
,
Eckert Animal Physiology: Mechanisms and Adaptations
,
W. H. Freeman and Company
,
New York
.
75.
Rome
,
L. C.
,
2005
, “
Design and Function of Superfast Muscles
,”
Annu. Rev. Physiol.
,
68
, pp.
193
221
.
You do not currently have access to this content.