Effective electrification of automotive vehicles requires designing the powertrain's configuration along with sizing its components for a particular vehicle type. Employing planetary gear (PG) systems in hybrid electric vehicle (HEV) powertrain architectures allows various architecture alternatives to be explored, including single-mode architectures that are based on a fixed configuration and multimode architectures that allow switching power flow configuration during vehicle operation. Previous studies have addressed the configuration and sizing problems separately. However, the two problems are coupled and must be optimized together to achieve system optimality. An all-in-one (AIO) system solution approach to the combined problem is not viable due to the high complexity of the resulting optimization problem. This paper presents a partitioning and coordination strategy based on analytical target cascading (ATC) for simultaneous design of powertrain configuration and sizing for given vehicle applications. The capability of the proposed design framework is demonstrated by designing powertrains with one and two PGs for a midsize passenger vehicle.

References

References
1.
Conlon
,
B. M.
,
Savagian
,
P. J.
,
Holmes
,
A. G.
, and
Harpster
,
M. O.
,
2011
, “
Output Split Electrically-Variable Transmission With Electric Propulsion Using One or Two Motors
,” U.S. Patent No. 7,867,124.
2.
Sasaki
,
S.
,
1998
, “
Toyota's Newly Developed Hybrid Powertrain
,”
10th International Symposium on Power Semiconductor Devices and ICs
, IEEE, pp.
17
22
.
3.
Schmidt
,
M.
,
1996
, “
Two-Mode, Input-Split, Parallel, Hybrid Transmission
,” U.S. Patent No. 5,558,588.
4.
Schmidt
,
M.
,
1996
, “
Two-Mode, Split Power, Electro-Mechanical Transmission
,” U.S. Patent No. 5,577,973.
5.
Holmes
,
A.
,
Klemen
,
D.
, and
Schmidt
,
M.
,
2003
, “
Electrically Variable Transmission With Selective Input Split, Compound Split, Neutral and Reverse Modes
,” U.S. Patent No. 6,527,658.
6.
Holmes
,
A.
, and
Schmidt
,
M.
,
2002
, “
Hybrid Electric Powertrain Including a Two-Mode Electrically Variable Transmission
,” U.S. Patent No. 6,478,705.
7.
Ai
,
X.
, and
Anderson
,
S.
,
2005
, “
An Electro-Mechanical Infinitely Variable Transmission for Hybrid Electric Vehicles
,” SAE Technical Paper No. 2005-01-0281.
8.
Schmidt
,
M.
,
1999
, “
Two-Mode, Compound-Split Electro-Mechanical Vehicular Transmission
,” U.S. Patent No. 5,931,757.
9.
Raghavan
,
M.
,
Bucknor
,
N. K.
, and
Hendrickson
,
J. D.
,
2007
, “
Electrically Variable Transmission Having Three Interconnected Planetary Gear Sets, Two Clutches and Two Brakes
,” U.S. Patent No. 7,179,187.
10.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
11.
Crawley
,
E.
,
Cameron
,
B.
, and
Selva
,
D.
,
2015
,
System Architecture: Strategy and Product Development for Complex Systems
,
Prentice Hall
, Upper Saddle River, NJ.
12.
Campbell
,
M. I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2000
, “
Agent-Based Synthesis of Electromechanical Design Configurations
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
61
69
.
13.
Münzer
,
C.
,
Helms
,
B.
, and
Shea
,
K.
,
2013
, “
Automatically Transforming Object-Oriented Graph-Based Representations Into Boolean Satisfiability Problems for Computational Design Synthesis
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101001
.
14.
Silvas
,
E.
,
Hofman
,
T.
,
Murgovski
,
N.
,
Etman
,
P.
, and
Steinbuch
,
M.
,
2016
, “
Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
PP
(
99
), (to be published).
15.
Liu
,
J.
, and
Peng
,
H.
,
2010
, “
A Systematic Design Approach for Two Planetary Gear Split Hybrid Vehicles
,”
Veh. Syst. Dyn.
,
48
(
11
), pp.
1395
1412
.
16.
Zhang
,
X.
,
Li
,
S. E.
,
Peng
,
H.
, and
Sun
,
J.
,
2015
, “
Efficient Exhaustive Search of Power-Split Hybrid Powertrains With Multiple Planetary Gears and Clutches
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
12
), p.
121006
.
17.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2013
, “
Design of Hybrid-Electric Vehicle Architecture Using Auto-Generation of Feasible Driving Modes
,”
ASME
Paper No. DETC2013-13043.
18.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2014
, “
Optimal Dual-Mode Hybrid Electric Vehicle Powertrain Architecture Design for a Variety of Loading Scenarios
,”
ASME
Paper No. DETC2014-34897.
19.
Bayrak
,
A. E.
,
Kang
,
N.
, and
Papalambros
,
P. Y.
,
2015
, “
Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design
,”
ASME
Paper No. DETC2015-46861.
20.
Kim
,
H. M.
,
2001
. “
Target Cascading in Optimal System Design
,” Ph.D. thesis, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
21.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
,
2003
, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
,
41
(
5
), pp.
897
905
.
22.
Kang
,
N.
,
Kokkolaras
,
M.
, and
Papalambros
,
P. Y.
,
2014
, “
Solving Multiobjective Optimization Problems Using Quasi-Separable MDO Formulations and Analytical Target Cascading
,”
Struct. Multidiscip. Optim.
,
50
(
5
), pp.
849
859
.
23.
Kang
,
N.
,
Kokkolaras
,
M.
, and
Papalambros
,
P. Y.
,
2014
, “
Optimal Design of Commercial Vehicle Systems Using Analytical Target Cascading
,”
Struct. Multidiscip. Optim.
,
50
(
6
), pp.
1103
1114
.
24.
Tosserams
,
S.
,
Etman
,
L.
,
Papalambros
,
P.
, and
Rooda
,
J.
,
2006
, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
176
189
.
25.
Bayrak
,
A. E.
,
2015
, “
Topology Considerations in Hybrid Electric Vehicle Powertrain Architecture Design
,” Ph.D. thesis, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
26.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
27.
Junkins
,
J.
, and
Rew
,
D.
,
1988
, “
Unified Optimization of Structures and Controllers
,”
Large Space Structures: Dynamics and Control
,
Springer
, Berlin, pp.
323
353
.
28.
Smith
,
M.
,
Grigoriadis
,
K.
, and
Skelton
,
R.
,
1992
, “
Optimal Mix of Passive and Active Control in Structures
,”
J. Guid., Control, Dyn.
,
15
(
4
), pp.
912
919
.
29.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
American Control Conference
, IEEE, Vol.
3
, pp.
1864
1869
.
30.
Peters
,
D. L.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2015
, “
Relationship Between Coupling and the Controllability Grammian in Co-Design Problems
,”
Mechatronics
,
29
, pp.
36
45
.
31.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
32.
Deodhar
,
N.
,
Vermillion
,
C.
, and
Tkacik
,
P.
,
2015
, “
A Case Study in Experimentally-Infused Plant and Controller Optimization for Airborne Wind Energy Systems
,”
American Control Conference (ACC)
, IEEE, pp.
2371
2376
.
33.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
,
Ulsoy
,
A. G.
, and
Hrovat
,
D.
,
2003
, “
Nested Plant/Controller Optimization With Application to Combined Passive/Active Automotive Suspensions
,”
American Control Conference
, IEEE, Vol.
4
, pp.
3375
3380
.
34.
Lin
,
C.-C.
,
Peng
,
H.
,
Grizzle
,
J. W.
, and
Kang
,
J.-M.
,
2003
, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
839
849
.
35.
Liu
,
J.
, and
Peng
,
H.
,
2006
, “
Control Optimization for a Power-Split Hybrid Vehicle
,”
American Control Conference
, IEEE.
36.
Delprat
,
S.
,
Guerra
,
T.
, and
Rimaux
,
J.
,
2002
, “
Control Strategies for Hybrid Vehicles: Optimal Control
,”
IEEE 56th Vehicular Technology
, IEEE, Vol.
53
, pp.
1681
1685
.
37.
Kim
,
N.
,
Cha
,
S.
, and
Peng
,
H.
,
2011
, “
Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1279
1287
.
38.
Paganelli
,
G.
,
Delprat
,
S.
,
Guerra
,
T.-M.
,
Rimaux
,
J.
, and
Santin
,
J.-J.
,
2002
, “
Equivalent Consumption Minimization Strategy for Parallel Hybrid Powertrains
,”
IEEE 55th Vehicular Technology Conference VTC Spring 2002
, IEEE, Vol.
4
, pp.
2076
2081
.
39.
Serrao
,
L.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2009
, “
ECMS as a Realization of Pontryagin's Minimum Principle for HEV Control
,”
American Control Conference
, IEEE, pp.
3964
3969
.
40.
Cheong
,
K. L.
,
Li
,
P. Y.
, and
Chase
,
T. R.
,
2011
, “
Optimal Design of Power-Split Transmissions for Hydraulic Hybrid Passenger Vehicles
,”
American Control Conference
, IEEE, pp.
3295
3300
.
41.
Antony
,
G. G.
, and
Pantelides
,
A.
,
2006
, “
Precision Planetary Servo Gearheads
,” Technical Report No. 06FTM04, American Gear Manufacturers Association.
You do not currently have access to this content.