This paper proposes an inverse structural modification method for eigenstructure assignment (EA), which allows to assign the desired mode shapes only at the parts of interest of the system. The presence of unimposed eigenvector entries leads to a nonconvex problem. Therefore, to boost the convergence to a global optimal solution, a homotopy optimization strategy is implemented based on the convex approximation of the cost function. Such a relaxation is performed through some auxiliary variables and through the McCormick's relaxation of the occurring bilinear terms. The approach handles general assignment tasks, with an arbitrary number of modification parameters and prescribed eigenpairs.
Issue Section:
Design Automation
References
1.
Ram
, Y.
, and Braun
, S.
, 1991
, “An Inverse Problem Associated With Modification of Incomplete Dynamic Systems
,” ASME J. Appl. Mech.
, 58
(1
), pp. 233
–237
.2.
Bucher
, I.
, and Braun
, S.
, 1993
, “The Structural Modification Inverse Problem: An Exact Solution
,” Mech. Syst. Signal Process.
, 7
(3
), pp. 217
–238
.3.
Sivan
, D.
, and Ram
, Y.
, 1997
, “Optimal Construction of a Mass-Spring System From Prescribed Modal and Spectral Data
,” J. Sound Vib.
, 201
(3
), pp. 323
–334
.4.
Kyprianou
, A.
, Mottershead
, J. E.
, and Ouyang
, H.
, 2004
, “Assignment of Natural Frequencies by an Added Mass and One or More Springs
,” Mech. Syst. Signal Process.
, 18
(2
), pp. 263
–289
.5.
Mottershead
, J.
, 2001
, “Structural Modification for the Assignment of Zeros Using Measured Receptances
,” ASME J. Appl. Mech.
, 68
(5
), pp. 791
–798
.6.
Andry
, A.
, Shapiro
, E.
, and Chung
, J.
, 1983
, “Eigenstructure Assignment for Linear Systems
,” IEEE Trans. Aerosp. Electron. Syst.
, 19
(5
), pp. 711
–729
.7.
Richiedei
, D.
, Trevisani
, A.
, and Zanardo
, G.
, 2011
, “A Constrained Convex Approach to Modal Design Optimization of Vibrating Systems
,” ASME J. Mech. Des.
, 133
(6
), p. 061011
.8.
Ouyang
, H.
, Richiedei
, D.
, Trevisani
, A.
, and Zanardo
, G.
, 2012
, “Eigenstructure Assignment in Undamped Vibrating Systems: A Convex-Constrained Modification Method Based on Receptances
,” Mech. Syst. Signal Process.
, 27
, pp. 397
–409
.9.
Ouyang
, H.
, Richiedei
, D.
, Trevisani
, A.
, and Zanardo
, G.
, 2012
, “Discrete Mass and Stiffness Modifications for the Inverse Eigenstructure Assignment in Vibrating Systems: Theory and Experimental Validation
,” Int. J. Mech. Sci.
, 64
(1
), pp. 211
–220
.10.
Hernandes
, J.
, and Suleman
, A.
, 2014
, “Structural Synthesis for Prescribed Target Natural Frequencies and Mode Shapes
,” Shock Vib.
, 2014
, p. 173786
.11.
Liu
, Z.
, Li
, W.
, Ouyang
, H.
, and Wang
, D.
, 2015
, “Eigenstructure Assignment in Vibrating Systems Based on Receptances
,” Arch. Appl. Mech.
, 85
(6
), pp. 713
–724
.12.
Allgower
, E.
, and Georg
, K.
, 2003
, Introduction to Numerical Continuation Methods
, Society for Industrial and Applied Mathematics
, Philadelphia, PA.13.
Forster
, W.
, 1995
, “Homotopy Methods
,” Handbook of Global Optimization
(Nonconvex Optimization and Its Applications), Vol. 2
, R.
Horst
, and P.
Pardalos
, eds., Kluwer Academic Publishers
, Dordrecht, The Netherlands
, pp. 669
–750
.14.
Dunlavy
, D. M.
, and O'Leary
, D. P.
, 2005
, “Homotopy Optimization Methods for Global Optimization
,” Sandia National Laboratories, Report No. SAND2005-7495
.15.
Vyasarayani
, C. P.
, Uchida
, T.
, Carvalho
, A.
, and McPhee
, J.
, 2011
, “Parameter Identification in Dynamic Systems Using the Homotopy Optimization Approach
,” Multibody Syst. Dyn.
, 26
(4
), pp. 411
–424
.16.
Al-Khayyal
, F. A.
, and Falk
, J. E.
, 1983
, “Jointly Constrained Biconvex Programming
,” Math. Oper. Res.
, 8
(2
), pp. 273
–286
.17.
McCormick
, G. P.
, 1976
, “Computability of Global Solutions to Factorable Nonconvex Programs—Part I: Convex Underestimating Problems
,” Math Program.
, 10
(1
), pp. 147
–175
.18.
Andersen
, E. D.
, and Andersen
, K. D.
, 2000
, “The MOSEK Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm
,” High Performance Optimization
, Vol. 33
, Springer
, Dorcrecht, The Netherlands.19.
Byrd
, R. H.
, Hribar
, M. E.
, and Nocedal
, J.
, 1999
, “An Interior Point Algorithm for Large-Scale Nonlinear Programming
,” SIAM J. Optim.
, 9
(4
), pp. 877
–900
.20.
Löfberg
, J.
, 2004
, “YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,” IEEE
International Symposium on Computer Aided Control Systems Design
, Taipei, Taiwan, Sept. 4, pp. 284
–289
.Copyright © 2016 by ASME
You do not currently have access to this content.