The synthesis of functional molecular linkages is constrained by difficulties in fabricating nanolinks of arbitrary shapes and sizes. Thus, classical mechanism synthesis methods, which assume the ability to manufacture any designed links, cannot provide a systematic process for assembling such linkages. We propose a new approach to building functional mechanisms with prescribed mobility by using only elements from a predefined “link soup.” First, we enumerate an exhaustive set of topologies, while employing divide-and-conquer algorithms to control the generation and elimination of redundant topologies. Then, we construct the linkage arrangements for each valid topology. Finally, we output a set of feasible geometries through a positional analysis step that minimizes the error associated with closure of the loops in the linkage while avoiding geometric interference. The proposed systematic approach outputs the ATLAS of candidate mechanisms, which can be further processed for downstream applications. The resulting synthesis procedure is the first of its kind that is capable of synthesizing functional linkages with prescribed mobility constructed from a soup of primitive entities.

References

References
1.
Tsai
,
L.-W.
,
2010
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
2.
Smith
,
M. B.
,
2011
,
Organic Synthesis
,
3rd ed.
, Vol.
1
,
Academics Press
,
An Imprint of Elsevier
,
San Diego, CA
.
3.
Michael
,
R. G.
, and
Johnson
,
D. S.
,
1979
,
Computers and Intractability: A Guide to the Theory of NP-Completeness
,
WH Freeman
,
San Francisco, CA
.
4.
Mruthyunjaya
,
T.
,
2003
, “
Kinematic Structure of Mechanisms Revisited
,”
Mech. Mach. Theory
,
38
(
4
), pp.
279
320
.
5.
Bunke
,
H.
,
2000
, “
Recent Developments in Graph Matching
,”
15th International Conference on Pattern Recognition
,
IEEE
, Barcelona, Spain, Sept. 3–7, Vol.
2
, pp.
117
124
.
6.
Foggia
,
P.
,
Percannella
,
G.
, and
Vento
,
M.
,
2014
, “
Graph Matching and Learning in Pattern Recognition in the Last 10 Years
,”
Int. J. Pattern Recognit. Artif. Intell.
,
28
(
1
), p.
1453001
.
7.
Yan
,
H.-S.
, and
Hwang
,
Y.-W.
,
1990
, “
Number Synthesis of Kinematic Chains Based on Permutation Groups
,”
Math. Comput. Modell.
,
13
(
8
), pp.
29
42
.
8.
Magnasco
,
V.
,
McWeeny
,
R.
, and
Maksic
,
Z.
,
1991
,
Theoretical Models of Chemical Bonding, Part 4: Theoretical Treatment of Large Molecules and Their Interactions
,
Springer-Verlag
,
Berlin
.
9.
Wampler
,
C. W.
,
Hauenstein
,
J. D.
, and
Sommese
,
A. J.
,
2011
, “
Mechanism Mobility and a Local Dimension Test
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1193
1206
.
10.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.
11.
Shahbazi
,
Z.
,
Ilieş
,
H. T.
, and
Kazerounian
,
K.
,
2010
, “
Hydrogen Bonds and Kinematic Mobility of Protein Molecules
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
021009
.
12.
Sljoka
,
A.
,
Shai
,
O.
, and
Whiteley
,
W.
,
2011
, “
Checking Mobility and Decomposition of Linkages Via Pebble Game Algorithm
,”
ASME
Paper No. DETC2011-48340.
13.
Demirtas
,
A.
, and
Shahbazi
,
Z.
,
2014
, “
An Optimized Kinematic Mobility Analysis of Protein Molecules
,”
ASME
Paper No. DETC2014-34783.
14.
Tavousi
,
P.
,
Behandish
,
M.
,
Ilieş
,
H. T.
, and
Kazerounian
,
K.
,
2015
, “
Protofold II: Enhanced Model and Implementation for Kinetostatic Protein Folding
,”
ASME J. Nanotechnol. Eng. Med.
,
6
(
3
), p.
034601
.
15.
Kazerounian
,
K.
,
Latif
,
K.
, and
Alvarado
,
C.
,
2005
, “
Protofold: A Successive Kinetostatic Compliance Method for Protein Conformation Prediction
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
712
717
.
16.
Lotan
,
I.
,
Schwarzer
,
F.
,
Halperin
,
D.
, and
Latombe
,
J.-C.
,
2004
, “
Algorithm and Data Structures for Efficient Energy Maintenance During Monte Carlo Simulation of Proteins
,”
J. Comput. Biol.
,
11
(
5
), pp.
902
932
.
17.
Canutescu
,
A. A.
, and
Dunbrack
,
R. L.
,
2003
, “
Cyclic Coordinate Descent: A Robotics Algorithm for Protein Loop Closure
,”
Protein Sci.
,
12
(
5
), pp.
963
972
.
18.
Meringer
,
M.
,
1999
, “
Fast Generation of Regular Graphs and Construction of Cages
,”
J. Graph Theory
,
30
(
2
), pp.
137
146
.
19.
Servatius
,
B.
,
Shai
,
O.
, and
Whiteley
,
W.
,
2010
, “
Combinatorial Characterization of the Assur Graphs From Engineering
,”
Eur. J. Combinatorics
,
31
(
4
), pp.
1091
1104
.
20.
Godsil
,
C. D.
, and
Kocay
,
W.
,
1982
, “
Constructing Graphs With Pairs of Pseudo-Similar Vertices
,”
J. Combinatorial Theory, Ser. B
,
32
(
2
), pp.
146
155
.
21.
Curtin
,
B.
,
2005
, “
Algebraic Characterizations of Graph Regularity Conditions
,”
Des. Codes Cryptography
,
34
(
2–3
), pp.
241
248
.
22.
Balakrishnan
,
R.
, and
Ranganathan
,
K.
,
2012
,
A Textbook of Graph Theory
,
Springer Science & Business Media
,
Berlin
.
23.
Chin
,
K. W.
,
Von Konsky
,
B. R.
, and
Marriott
,
A.
,
1997
, “
Closed-Form and Generalized Inverse Kinematics Solutions for the Analysis of Human Motion
,” 19th Annual International Conference of the
IEEE
on Engineering in Medicine and Biology Society
, Chicago, IL, Oct. 30–Nov. 2, Vol.
5
, pp.
1911
1914
.
24.
Welman
,
C.
,
1993
, “
Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation
,”
Ph.D. thesis
,
Simon Fraser University, Burnaby, BC, Canada
.
25.
Olsen
,
A. L.
, and
Petersen
,
H. G.
,
2011
, “
Inverse Kinematics by Numerical and Analytical Cyclic Coordinate Descent
,”
Robotica
,
29
(
4
), pp.
619
626
.
26.
Craik
,
D. J.
,
2006
, “
Seamless Proteins Tie Up Their Loose Ends
,”
Science
,
311
(
5767
), pp.
1563
1564
.
27.
Witt
,
D.
,
2008
, “
Recent Developments in Disulfide Bond Formation
,”
Synthesis
,
2008
(
16
), pp.
2491
2509
.
28.
Semlyen
,
J. A.
,
1996
,
Large Ring Molecules
,
Wiley
,
Hoboken, NJ
.
29.
Hanwell
,
M. D.
,
Curtis
,
D. E.
,
Lonie
,
D. C.
,
Vandermeersch
,
T.
,
Zurek
,
E.
, and
Hutchison
,
G. R.
,
2012
, “
Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform
,”
J. Cheminf.
,
4
(
1
), p.
17
.
You do not currently have access to this content.