Singularities are one of the most important issues affecting the performance of parallel mechanisms. A parallel mechanism with less than six degrees of freedom (6DOF) is classed as having lower mobility. In addition to input–output singularities, such mechanisms potentially suffer from singularities among their constraints. Furthermore, the utilization of closed-loop subchains (CLSCs) may introduce additional singularities, which can strongly affect the motion/force transmission ability of the entire mechanism. In this paper, we propose a technique for the analysis of singularities occurring within planar CLSCs, along with a finite, dimensionless, frame invariant index, based on screw theory, for examining the closeness to these singularities. The integration of the proposed index with existing performance measures is discussed in detail and exemplified on a prototype industrial parallel mechanism.

References

References
1.
Brogårdh
,
T.
,
2002
, “
PKM Research-Important Issues, as Seen From a Product Development Perspective at ABB Robotics
,” Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebec, Canada.
2.
Marlow
,
K.
,
Isaksson
,
M.
,
Abdi
,
H.
, and
Nahavandi
,
S.
,
2014
, “
Workspace Analysis of Two Similar 3-DOF Axis-Symmetric Parallel Manipulators
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp.
1690
1696
.
3.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2012
, “
Constraint Analysis and Bifurcated Motion of the 3PUP Parallel Mechanism
,”
Mech. Mach. Theory
,
49
, pp.
256
269
.
4.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Molfino
,
R.
,
2010
, “
Kinematics Analysis of the Exechon Tripod
,”
ASME
Paper No. DETC2010-28668.
5.
Marlow
,
K.
,
2015
, “
Motion/Force Transmission Analysis of Axis-Symmetric Parallel Mechanisms With Closed-Loop Sub-Chains
,” Ph.D. thesis, Deakin University, Geelong, Australia.
6.
Clavel
,
R.
,
1990
, “
Device for the Movement and Positioning of an Element in Space
,”
U.S. Patent No. 4,976,582
.
7.
Exechon
,
A. B.
,
2015
, “
Exechon
,” Last accessed June 2015, www.exechon.com/
8.
PKM TRICEPT
,
S. L.
,
2015
, “
Tricept T9000
,” Last accessed June, 2015, www.pkmtricept.com/
9.
Pierrot
,
F.
, and
Company
,
O.
,
1999
, “
H4: A New Family of 4-DOF Parallel Robots
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Atlanta, GA, pp.
508
513
.
10.
Kock
,
S.
,
Oesterlein
,
R.
, and
Brogårdh
,
T.
,
2003
, “
Industrial Robot
,” WO Patent Application 03/066289 A1.
11.
Wenger
,
P.
, and
Chablat
,
D.
,
2000
, “
Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide
,”
Advances in Robot Kinematics
,
Springer
, Dordrecht,
The Netherlands
, pp.
305
314
.
12.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
13.
Zlatanov
,
D.
,
Bonev
,
I.
, and
Gosselin
,
C.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA’02
), Vol.
1
, pp.
496
502
.
14.
Amine
,
S.
,
Masouleh
,
M. T.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
,
2012
, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011011
.
15.
Tsai
,
L.
,
1998
, “
The Jacobian Analysis of a Parallel Manipulator Using Reciprocal Screws
,”
Advances in Robot Kinematics: Analysis and Control
,
Springer
, Dordrecht,
The Netherlands
, pp.
327
336
.
16.
Joshi
,
S. A.
, and
Tsai
,
L.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME
Paper No. DETC2002/MECH-34238.
17.
Leal
,
E. R.
, and
Dai
,
J. S.
,
2007
, “
From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms
,”
ASME
Paper No. DETC2007-35516.
18.
Ball
,
R. S.
,
1998
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
19.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford, UK
.
20.
Sutherland
,
G.
, and
Roth
,
B.
,
1973
, “
A Transmission Index for Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
589
597
.
21.
Tsai
,
M. J.
, and
Lee
,
H. W.
,
1994
, “
The Transmissivity and Manipulability of Spatial Mechanisms
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
137
143
.
22.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
23.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
24.
Liu
,
X.-J.
,
Wu
,
C.
, and
Wang
,
J.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
.
25.
Amine
,
S.
,
Kanaan
,
D.
,
Caro
,
S.
, and
Wenger
,
P.
,
2010
, “
Constraint and Singularity Analysis of Lower-Mobility Parallel Manipulators With Parallelogram Joints
,”
ASME
Paper No. DETC2010-28483.
26.
Fang
,
H.
,
Fang
,
Y.
, and
Zhang
,
K.
,
2012
, “
Reciprocal Screw Theory Based Singularity Analysis of a Novel 3-DOF Parallel Manipulator
,”
Chin. J. Mech. Eng.
,
25
(
4
), pp.
647
653
.
27.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
, New York.
28.
Plücker
,
J.
,
1868
,
Neue Geometrie des Raumes: gegründet auf die Betrachtung der geraden Linie als Raumelement
, Vol.
1
.
Teubner
,
Leipzig
, Germany.
29.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2002
, “
Null-Space Construction Using Cofactors From a Screw-Algebra Context
,”
Proc. R. Soc. London, Ser. A
,
458
(
2024
), pp.
1845
1866
.
30.
Zhao
,
J.
,
Li
,
B.
,
Yang
,
X.
, and
Yu
,
H.
,
2009
, “
Geometrical Method to Determine the Reciprocal Screws and Applications to Parallel Manipulators
,”
Robotica
,
27
(
6
), pp.
929
940
.
31.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
651
.
32.
Huang
,
Z.
, and
Li
,
Q.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
145
.
33.
Zhao
,
T. S.
,
Dai
,
J. S.
, and
Huang
,
Z.
,
2002
, “
Geometric Analysis of Overconstrained Parallel Manipulators With Three and Four Degrees of Freedom
,”
JSME Int. J., Ser. C
,
45
(
3
), pp.
730
740
.
34.
Clavel
,
R.
,
1988
. “
Delta: A Fast Robot With Parallel Geometry
,” 18th International Symposium on Industrial Robots, Lausanne, Switzerland, pp.
91
100
.
35.
Liu
,
X.-J.
,
Chen
,
X.
, and
Nahon
,
M.
,
2014
, “
Motion/Force Constrainability Analysis of Lower-Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031006
.
36.
Xie
,
F.
,
Liu
,
X.
, and
Li
,
J.
,
2014
, “
Performance Indices for Parallel Robots Considering Motion/Force Transmissibility
,”
Intelligent Robotics and Applications
(Lecture Notes in Computer Science), Vol.
8917
,
Springer International Publishing
, Cham, Switzerland, pp.
35
43
.
37.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Transmission Angle in Mechanisms (Triangle in Mech)
,”
Mech. Mach. Theory
,
37
(
2
), pp.
175
195
.
38.
Alt
,
V. H.
,
1932
, “
Der uberstragungswinkel und seine bedeutung fur dar konstruieren periodischer getriebe
,”
Werksstattstechnik
,
26
(
4
), pp.
61
65
.
39.
Hall
,
A. S.
,
1961
,
Kinematics and Linkage Design
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Cui
,
H.
,
Zhu
,
Z.
,
Gan
,
Z.
, and
Brogårdh
,
T.
,
2005
, “
Kinematic Analysis and Error Modeling of TAU Parallel Robot
,”
Rob. Comput.-Integr. Manuf.
,
21
(
6
), pp.
497
505
.
41.
Zhu
,
Z.
,
Li
,
J.
,
Gan
,
Z.
, and
Zhang
,
H.
,
2005
, “
Kinematic and Dynamic Modelling for Real-Time Control of Tau Parallel Robot
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1051
1067
.
42.
Isaksson
,
M.
,
Brogårdh
,
T.
,
Lundberg
,
I.
, and
Nahavandi
,
S.
,
2010
, “
Improving the Kinematic Performance of the SCARA-Tau PKM
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
4683
4690
.
43.
Isaksson
,
M.
,
Brogårdh
,
T.
, and
Nahavandi
,
S.
,
2012
, “
Parallel Manipulators With a Rotation-Symmetric Arm System
,”
ASME J. Mech. Des.
,
134
(
11
), p.
114503
.
44.
Isaksson
,
M.
,
Eriksson
,
A.
,
Watson
,
M.
,
Brogårdh
,
T.
, and
Nahavandi
,
S.
,
2015
, “
A Method for Extending Planar Axis-Symmetric Parallel Manipulators to Spatial Mechanisms
,”
Mech. Mach. Theory
,
83
, pp.
1
13
.
You do not currently have access to this content.