Anisotropic mesh adaptation has been used to accelerate computation in several engineering fields, and we show that it can also be used for topology optimization. We use a combination of filtered continuous sensitivities and filtered design variables to drive the mesh adaptation. The filtered design variables are computed for this purpose only, while the filtered sensitivities are used as input to the optimizer. We test mesh independence for a cantilever problem and also show results for two other test cases. Finally, speedup relative to isotropic adaptation is estimated at 50 using average element aspect ratios.

References

References
1.
Loseille
,
A.
,
Dervieux
,
A.
, and
Alauzet
,
F.
,
2010
, “
Fully Anisotropic Goal-Oriented Mesh Adaptation for 3d Steady Euler Equations
,”
J. Comput. Phys.
,
229
(
8
), pp.
2866
2897
.
2.
Alauzet
,
F.
,
Frey
,
P. J.
,
George
,
P. L.
, and
Mohammadi
,
B.
,
2007
, “
3D Transient Fixed Point Mesh Adaptation for Time-Dependent Problems: Application to CFD Simulations
,”
J. Comput. Phys.
,
222
(
2
), pp.
592
623
.
3.
Piggott
,
M. D.
,
Farrell
,
P. E.
,
Wilson
,
C. R.
,
Gorman
,
G. J.
, and
Pain
,
C. C.
,
2009
, “
Anisotropic Mesh Adaptivity for Multi-Scale Ocean Modelling
,”
Philos. Trans. R. Soc. A
,
367
(
1907
), pp.
4591
4611
.
4.
Goffin
,
M. A.
,
Baker
,
C. M. J.
,
Buchan
,
A. G.
,
Pain
,
C. C.
,
Eaton
,
M. D.
, and
Smith
,
P. N.
,
2013
, “
Minimising the Error in Eigenvalue Calculations Involving the Boltzmann Transport Equation Using Goal-Based Adaptivity on Unstructured Meshes
,”
J. Comput. Phys.
,
242
, pp.
726
752
.
5.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Berlin
.
6.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
7.
Wallin
,
M.
,
Ristinmaa
,
M.
, and
Askfelt
,
H.
,
2012
, “
Optimal Topologies Derived From a Phase-Field Method
,”
Struct. Multidiscip. Optim.
,
45
(
2
), pp.
171
183
.
8.
Amstutz
,
S.
, and
Novotny
,
A. A.
,
2010
, “
Topological Optimization of Structures Subject to von Mises Stress Constraints
,”
Struct. Multidiscip. Optim.
,
41
(
3
), pp.
407
420
.
9.
Christiansen
,
A. N.
,
Bærentzen
,
J. A.
,
Nobel-Jørgensen
,
M.
,
Aage
,
N.
, and
Sigmund
,
O.
,
2015
, “
Combined Shape and Topology Optimization of 3D Structures
,”
Comput. Graphics
,
46
, pp.
25
35
.
10.
Borrvall
,
T.
, and
Petersson
,
J.
,
2001
, “
Large-Scale Topology Optimization in 3D Using Parallel Computing
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
46
), pp.
6201
6229
.
11.
Alexandersen
,
J.
, and
Lazarov
,
B. S.
,
2015
, “
Topology, Optimisation of Manufacturable Microstructural Details Without Length Scale Separation Using a Spectral Coarse Basis Preconditioner
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
156
182
.
12.
Aage
,
N.
,
Poulsen
,
T. H.
,
Gersborg-Hansen
,
A.
, and
Sigmund
,
O.
,
2008
, “
Topology Optimization of Large Scale Stokes Flow Problems
,”
Struct. Multidiscip. Optim.
,
35
(
2
), pp.
175
180
.
13.
Loseille
,
A.
,
2014
, “
Metric-Orthogonal Anisotropic Mesh Generation
,”
Procedia Eng.
,
82
, pp.
403
415
.
14.
Chen
,
L.
,
Sun
,
P.
, and
Xu
,
J.
,
2007
, “
Optimal Anisotropic Meshes for Minimizing Interpolation Errors in Lp-Norm
,”
Math. Comput.
,
76
(
257
), pp.
179
204
.
15.
Loseille
,
A.
, and
Alauzet
,
F.
,
2011
, “
Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error
,”
SIAM J. Numer. Anal.
,
49
(
1
), pp.
38
60
.
16.
Pain
,
C. C.
,
Umpleby
,
A. P.
,
De Oliveira
,
C. R. E.
, and
Goddard
,
A. J. H.
,
2001
, “
Tetrahedral Mesh Optimisation and Adaptivity for Steady-State and Transient Finite Element Calculations
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
29
), pp.
3771
3796
.
17.
Agouzal
,
A.
,
Lipnikov
,
K.
, and
Vassilevski
,
Y.
,
1999
, “
Adaptive Generation of Quasi-Optimal Tetrahedral Meshes
,”
East-West Journal of Numerical Mathematics
,
7
(4), pp.
223
244
.
18.
Jensen
,
K. E.
, and
Gorman
,
G.
,
2015
, “
Details of Tetrahedral Anisotropic Mesh Adaptation
,”
Computer Physics Communications
,
201
, pp.
135
143
.
19.
Rokos
,
G.
,
Gorman
,
G. J.
,
Jensen
,
K. E.
, and
Kelly
,
P. H. J.
,
2015
, “Thread Parallelism for Highly Irregular Computation in Anisotropic Mesh Adaptation,” Proceedings of the Third International Conference on Exascale Applications and Software, pp. 103–108.
20.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
21.
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Filters in Topology Optimization Based on Helmholtz-Type Differential Equations
,”
Int. J. Numer. Methods Eng.
,
86
(
6
), pp.
765
781
.
22.
Alnaes
,
M.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G.
, “The FEniCS Project Version 1.5,” Archive of Numerical Software,
3
(100).
23.
Farrell
,
P. E.
,
Ham
,
D. A.
,
Funke
,
S. W.
, and
Rognes
,
M. E.
,
2013
, “
Automated Derivation of the Adjoint of High-Level Transient Finite Element Programs
,”
SIAM Journal on Scientific Computing
,
35
(
4
), pp.
C369
C393
.
24.
Guénette
,
R.
,
Fortin
,
A.
,
Kane
,
A.
, and
Hétu
,
J.-F.
,
2008
, “
An Adaptive Remeshing Strategy for Viscoelastic Fluid Flow Simulations
,”
J. Non-Newtonian Fluid Mech.
,
153
(
1
), pp.
34
45
.
25.
Sigmund
,
O.
, and
Maute
,
K.
,
2012
, “
Sensitivity Filtering From a Continuum Mechanics Perspective
,”
Struct. Multidiscip. Optim.
,
46
(
4
), pp.
471
475
.
26.
Groenwold
,
A. A.
, and
Etman
,
L. F. P.
,
2010
, “
A Quadratic Approximation for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
82
(
4
), pp.
505
524
.
27.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
33
(
4–5
), pp.
401
424
.
28.
Wang
,
S.
,
de Sturler
,
E.
, and
Paulino
,
G. H.
,
2007
, “
Large-Scale Topology Optimization Using Preconditioned Krylov Subspace Methods With Recycling
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2441
2468
.
29.
Farrell
,
P. E.
,
2009
, “
Galerkin Projection of Discrete Fields Via Supermesh Construction
,” Ph.D. thesis, Imperial College London, London, UK.
30.
Kawamoto
,
A.
,
Matsumori
,
T.
,
Nomura
,
T.
,
Kondoh
,
T.
,
Yamasaki
,
S.
, and
Nishiwaki
,
S.
,
2013
, “
Topology Optimization by a Time-Dependent Diffusion Equation
,”
Int. J. Numer. Methods Eng.
,
93
(
8
), pp.
795
817
.
You do not currently have access to this content.