An approach to designing products based on adapting patterns and behaviors from origami is presented. The approach is illustrated by showing its capability for developing mechanism applications for aerospace-based systems. Origami has several attributes that are sought after in aerospace designs, such as deployability, stowability, and portability. The origami-adapted design process seeks to facilitate designers in reliably adapting origami into useful products that achieve desirable attributes. The origami-adapted design process is illustrated and tested using three examples of preliminary design: an origami bellows to protect the drill shafts of a Mars Rover, an expandable habitat for the International Space Station, and a deployable parabolic antenna for space and earth communication systems. Each of these examples starts with an origami fold pattern and modifies it to fulfill specific needs for an aerospace-based product.

References

References
1.
Francis
,
K. C.
,
Rupert
,
L. T.
,
Lang
,
R. J.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs
,”
ASME
Paper No. DETC2014-34031.
2.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
3.
Reynolds
,
W. D.
,
Jeon
,
S. K.
,
Banik
,
J. A.
, and
Murphey
,
T. W.
,
2013
, “
Advanced Folding Approaches for Deployable Spacecraft Payloads
,”
ASME
Paper No. DETC2013-13378.
4.
Lang
,
R. J.
,
2008
, “
From Flapping Birds to Space Telescopes: The Modern Science of Origami
,”
6th International Symposium on Non-Photorealistic Animation and Rendering
.
5.
Sigel
,
D.
,
Thomson
,
M.
,
Webb
,
D.
,
Willis
,
P.
,
Lisman
,
P.
, and
Trease
,
B.
,
2014
, “
Application of Origami in the Starshade Spacecraft Optical Blanket Design
,”
ASME
Paper No. DETC2014-34315.
6.
Morgan
,
J.
,
Magleby
,
S.
,
Lang
,
R.
, and
Howell
,
L.
,
2015
, “
A Preliminary Process for Understanding Origami-Adapted Design
,”
ASME
Paper No. DETC2015-47559.
7.
Fowler
,
R. M.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2011
, “
Compliant Space Mechanisms: A New Frontier for Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
205
2015
.
8.
Guest
,
S. D.
,
1994
, “
Deployable Structures: Concepts and Analysis
,”
Ph.D. thesis
, University of Cambridge, Cambridge, UK.
9.
Lichodziejewski
,
D.
,
Derbes
,
B.
,
Reinert
,
R.
,
Belvin
,
K.
,
Slade
,
K.
, and
Mann
,
T.
,
2004
, “
Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail
,”
AIAA
Paper No. 1507.
10.
Natori
,
M. C.
,
Katsumata
,
N.
, and
Yamakawa
,
H.
,
2010
, “
Membrane Modular Space Structure Systems and Deployment Characteristics of Their Inflatable Tube Elements
,”
51st AIAA Structures, Structural Dynamics, and Materials Conference
.
11.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1992
, “
Inextensional Warping of Flat Membranes
,”
First International Seminar on Structural Morphology
.
12.
Schenk
,
M.
,
Viquerat
,
A.
,
Seffen
,
K.
, and
Guest
,
S.
,
2014
, “
Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization
,”
J. Spacecr. Rockets
,
51
(
3
), pp.
762
778
.
13.
Humihiko
,
G.
,
Katsuya
,
S.
,
Yasuhiro
,
K.
, and
Takuro
,
E.
,
2014
, “
Behaviors of Bellows-Like Origami Patterned Tubes With Trapezoidal Patterns
,”
J. Civ. Eng. Archit.
,
8
(
11
), pp.
1438
1444
.
14.
Barker
,
R.
, and
Guest
,
S.
,
2000
, “
Inflatable Triangulated Cylinders
,”
IUTAM-LASS
Symposium on Deployable Structures: Theory and Applications
, Cambridge, UK, Sept. 6–9.
15.
Schenk
,
M.
,
Kerr
,
S. G.
,
Smyth
,
A. M.
, and
Guest
,
S. D.
,
2013
, “
Inflatable Cylinders for Deployable Space Structures
,”
First Conference Transformables
, Seville, Spain, Sept. 18–20.
16.
Wilson
,
L.
,
Pellegrino
,
S.
, and
Danner
,
R.
,
2013
, “
Origami Sunshield Concepts for Space Telescopes
,”
AIAA
Paper No. 2013-1594.
17.
Saito
,
K.
,
Pellegrino
,
S.
, and
Nojima
,
T.
,
2014
, “
Manufacture of Arbitrary Cross-Section Composite Honeycomb Cores Based on Origami Techniques
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051011
.
18.
NASA
,
2015
, “
NASA Technology Roadmaps
,” Report No. 12.
19.
Helms
,
M.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.
20.
Kusiak
,
A.
, and
Wang
,
J.
,
1993
, “
Decomposition of the Design Process
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
687
695
.
21.
Nagel
,
R. L.
,
Midha
,
P. A.
,
Tinsley
,
A.
,
Stone
,
R. B.
,
McAdams
,
D. A.
, and
Shu
,
L. H.
,
2008
, “
Exploring the Use of Functional Models in Biomimetic Conceptual Design
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121102
.
22.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
113
132
.
23.
Lang
,
R. J.
,
2011
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
A K Peters/CRC Press
, Natick, MA.
24.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
International Association for Shell and Spatial Structures
(
IASS
) Symposium, Shanghai, China, Nov. 8–12.
25.
Watanabe
,
N.
, and
Kawaguchi
,
K.
,
2009
, “
The Method for Judging Rigid Foldability
,”
Origami4
:
The Fourth International Conference on Origami in Science, Mathematics, and Education
.
26.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
An Offset Panel Technique for Thick Rigidly Foldable Origami
,”
ASME
Paper No. DETC2014-35606.
27.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
A Family of Dual-Segment Compliant Joints Suitable for Use as Surrogate Folds
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092302
.
28.
Bowen
,
L.
,
Springsteen
,
K.
,
Frecker
,
M.
, and
Simpson
,
T. W.
,
2016
, “
Trade Space Exploration of Magnetically-Actuated Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(3), p.
031012
.
29.
Ryu
,
J.
,
D'Amato
,
M.
,
Cui
,
X.
,
Long
,
K. N.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2012
, “
Photo-Origami—Bending and Folding Polymers With Light
,”
Appl. Phys. Lett.
,
100
(
16
), p.
161908
.
30.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2011
, “
Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp. 4608–4613.
31.
Wilcox
,
E.
,
Shrager
,
A.
,
Bowen
,
L.
,
Frecker
,
M.
,
Lockette
,
P. V.
,
Simpson
,
T.
,
Magleby
,
S.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2015
, “
Considering Mechanical Advantage in the Design and Actuation of an Origami-Based Mechanism
,”
ASME
Paper No. DETC2015-47708.
32.
Tachi
,
T.
, and
Miura
,
K.
,
2012
, “
Rigid-Foldable Cylinders and Cells
,”
J. Int. Assoc. Shell Spat. Struct.
,
53
(
4
), pp.
217
226
.
33.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
34.
Thrall
,
A. P.
, and
Quaglia
,
C. P.
,
2014
, “
Accordion Shelters: A Historical Review of Origami-Like Deployable Shelters Developed by the U.S. Military
,”
Eng. Struct.
,
59
, pp.
686
692
.
35.
Maanasa
,
V. L.
, and
Sri
,
R. L. R.
,
2014
, “
Origami-Innovative Structural Forms and Application in Disaster Management
,”
Int. J. Curr. Eng. Technol.
,
4
(
5
), pp.
3431
3436
.
36.
Giesecke
,
K.
,
2004
, “
Deployable Structures Inspired by the Origami Art
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
37.
Hanaor
,
A.
, and
Levy
,
R.
,
2001
, “
Evaluation of Deployable Structures for Space Enclosures
,”
Int. J. Space Struct.
,
16
(
4
), pp.
211
229
.
38.
Connelly
,
R.
,
Sabitov
,
I.
, and
Walz
,
A.
,
1997
, “
The Bellows Conjecture
,”
Contrib. Algebra Geom.
,
38
, pp.
1
10
.
39.
Tachi
,
T.
,
2011
, “
Rigid Foldable Thick Origami
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
.
40.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
S.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
41.
Murphey
,
T.
,
2009
, “
Historical Perspectives on the Development of Deployable Reflectors
,”
AIAA
Paper No. 2009-2605.
42.
Seffen
,
K. A.
, and
Maurini
,
C.
,
2013
, “
Growth and Shape Control of Disks by Bending and Extension
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
190
204
.
43.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Hart
,
V.
,
Price
,
G. N.
, and
Tachi
,
T.
,
2011
, “
(Non) Existence of Pleated Folds: How Paper Folds Between Creases
,”
Graphs Combinatorics
,
27
(
3
), pp.
377
397
.
44.
Delimont
,
I.
,
Magleby
,
S.
, and
Howell
,
L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p. 011009.
You do not currently have access to this content.