In order for remanufacturers to succeed in the market, it is important for them to be capable of ensuring in advance that a product is suitable for remanufacturing and that a remanufactured product will provide greater economic and environmental value than a brand-new product. This paper provides an approach to estimate the economic and environmental advantages of a remanufactured product. Focusing on the fact that advantages are greatly influenced by the nature of a product (i.e., its design and lifetime characteristics) as well as the timing of the remanufacturing, this paper proposes a model for assessing the time-varying advantages of remanufacturing a given product. The model provides an objective, quantitative method to compare a remanufactured product with an equivalent brand-new version of the product. Focus is placed on three perspectives: unit production cost, environmental impact, and net profit. By providing a multidimensional assessment tool for measuring product remanufacturability, the model is expected to assist remanufacturers make informed and effective decisions concerning product planning. It also helps marketing activities by supporting an effective sustainability communication with customers. Two versions of the model are presented, each of which targets a specific product type: (1) a product with only physical deterioration and (2) a product with both physical deterioration and technological obsolescence. Each version of the model is illustrated by utilizing an automotive alternator and a desktop computer, respectively.

References

References
1.
Kwak
,
M.
,
2012
, “
Green Profit Design for Lifecycle
,”
Ph.D. dissertation
, University of Illinois at Urbana-Champaign, Urbana, IL.
2.
Kwak
,
M.
, and
Kim
,
H.
,
2015
, “
Assessing Time-Varying Advantages of Remanufacturing: A Model for Products With Physical and Technological Obsolescence
,”
20th International Conference on Engineering Design
(
ICED15
), Milan, Italy, July 27–30, pp.
135
144
.
3.
Kwak
,
M.
, and
Kim
,
H. M.
,
2011
, “
Time-Varying Value of an End-of-Life Product for Design for Recovery
,”
18th International Conference on Engineering Design
(
ICED11
), Copenhagen, Denmark, Aug. 15–19, pp.
70
80
.
4.
Hauser
,
W.
, and
Lund
,
R. T.
,
2003
, “
The Remanufacturing Industry: Anatomy of a Giant
,” Boston University, Boston, MA.
5.
Fleischmann
,
M.
,
Bloemhof-Ruwaard
,
J. M.
,
Dekker
,
R.
,
van der Laan
,
E.
,
van Nunen
,
J.
, and
Van Wassenhove
,
L. N.
,
1997
, “
Quantitative Models for Reverse Logistics: A Review
,”
Eur. J. Oper. Res.
,
103
(
1
), pp.
1
17
.
6.
Seitz
,
M. A.
,
2007
, “
A Critical Assessment of Motives for Product Recovery: The Case of Engine Remanufacturing
,”
J. Cleaner Prod.
,
15
(
11–12
), pp.
1147
1157
.
7.
Bhuie
,
A. K.
,
Ogunseitan
,
O. A.
,
Saphores
,
J.-D. M.
, and
Shapiro
,
A. A.
,
2004
, “
Environmental and Economic Trade-Offs in Consumer Electronic Products Recycling: A Case Study of Cell Phones and Computers
,”
IEEE
International Symposium on Electronics and the Environment
, May 10–13, pp.
74
79
.
8.
Guide
,
V. D. R.
,
Teunter
,
R. H.
, and
Van Wassenhove
,
L. N.
,
2003
, “
Matching Demand and Supply to Maximize Profits From Remanufacturing
,”
Manuf. Serv. Oper. Manage.
,
5
(
4
), pp.
303
316
.
9.
Intlekofer
,
K.
,
Bras
,
B.
, and
Ferguson
,
M.
,
2010
, “
Energy Implications of Product Leasing
,”
Environ. Sci. Technol.
,
44
(
12
), pp.
4409
4415
.
10.
Boustani
,
A.
,
Sahni
,
S.
,
Graves
,
S. C.
, and
Gutowski
,
T. G.
,
2010
, “
Appliance Remanufacturing and Life Cycle Energy and Economic Savings
,”
IEEE International Symposium on Sustainable Systems and Technology
(
ISSST
), Arlington, VA, May 17–19.
11.
Gutowski
,
T. G.
,
Sahni
,
S.
,
Boustani
,
A.
, and
Graves
,
S. C.
,
2011
, “
Remanufacturing and Energy Savings
,”
Environ. Sci. Technol.
,
45
(
10
), pp.
4540
4547
.
12.
Lund
,
R. T.
,
1984
, “Remanufacturing: The Experience of the United States and Implications for Developing Countries,”
The World Bank
,
Washington DC
.
13.
Guide
,
V. D. R.
,
2000
, “
Production Planning and Control for Remanufacturing: Industry Practice and Research Needs
,”
J. Oper. Manage.
,
18
(
4
), pp.
467
483
.
14.
Amezquita
,
T.
,
Hammond
,
R.
,
Salazar
,
M.
, and
Bras
,
B.
,
1995
, “
Characterizing the Remanufacturability of Engineering Systems
,” 1995
ASME
Advances in Design Automation Conference, Boston, MA, Sept. 17–20, pp.
271
278
.
15.
Hammond
,
R.
, and
Bras
,
B. A.
,
1996
, “
Design for Remanufacturing Metrics
,”
1st International Workshop on Reuse
, Eindhoven, The Netherlands, pp.
5
22
.
16.
Shu
,
L. H.
, and
Flowers
,
W. C.
,
1999
, “
Application of a Design-for-Remanufacture Framework to the Selection of Product Life-Cycle Fastening and Joining Methods
,”
Rob. Comput.-Integr. Manuf.
,
15
(
3
), pp.
179
190
.
17.
Zwolinski
,
P.
, and
Brissaud
,
D.
,
2008
, “
Remanufacturing Strategies to Support Product Design and Redesign
,”
J. Eng. Des.
,
19
(
4
), pp.
321
335
.
18.
Du
,
Y.
,
Cao
,
H.
,
Liu
,
F.
,
Li
,
C.
, and
Chen
,
X.
,
2012
, “
An Integrated Method for Evaluating the Remanufacturability of Used Machine Tool
,”
J. Cleaner Prod.
,
20
(
1
), pp.
82
91
.
19.
Fang
,
H. C.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
,
2014
, “
Product Remanufacturability Assessment Based on Design Information
,”
Procedia CIRP
,
15
(0), pp.
195
200
.
20.
Xing
,
K.
, and
Luong
,
L.
,
2009
, “
Modeling and Evaluation of Product Fitness for Service Life Extension
,”
J. Eng. Des.
,
20
(
3
), pp.
243
263
.
21.
Ishii
,
K.
,
1999
, “
Incorporating End-of-Life Strategy in Product Definition
,”
1st International Symposium on Environmentally Conscious Design and Inverse Manufacturing
EcoDesign’99
, Tokyo, Japan, Feb. 1–3, pp.
364
369
.
22.
Kwak
,
M.
, and
Kim
,
H. M.
,
2010
, “
Evaluating End-of-Life Recovery Profit by a Simultaneous Consideration of Product Design and Recovery Network Design
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071001
.
23.
Kwak
,
M.
, and
Kim
,
H. M.
,
2010
, “
Assessing Product Family Design From an End-of-Life Perspective
,”
Eng. Optim.
,
43
(
3
), pp.
233
255
.
24.
Bras
,
B.
,
2007
, “
Design for Remanufacturing Processes
,”
Environmentally Conscious Mechanical Design
,
M.
Kutz
, ed.,
Wiley
,
Hoboken, NJ
, pp.
283
318
.
25.
Kumar
,
V.
,
Shirodkar
,
S.
,
Camelio
,
J. A.
, and
Sutherland
,
J. W.
,
2007
, “
Value Flow Characterization During Product Lifecycle to Assist in Recovery Decisions
,”
Int. J. Prod. Res.
,
45
(
18
), pp.
4555
4572
.
26.
Rachaniotis
,
N. P.
, and
Pappis
,
C. P.
,
2008
, “
Preventive Maintenance and Upgrade System: Optimizing the Whole Performance System by Components' Replacement or Rearrangement
,”
Int. J. Prod. Econ.
,
112
(
1
), pp.
236
244
.
27.
Pandey
,
V.
, and
Thurston
,
D.
,
2009
, “
Effective Age of Remanufactured Products: An Entropy Approach
,”
ASME J. Mech. Des.
,
131
(
3
), p.
031008
.
28.
Guide
,
V. D. R.
,
Souza
,
G. C.
,
Van Wassenhove
,
L. N.
, and
Blackburn
,
J. D.
,
2006
, “
Time Value of Commercial Product Returns
,”
Manage. Sci.
,
52
(
8
), pp.
1200
1214
.
29.
Ferrer
,
G.
,
1997
, “
The Economics of Personal Computer Remanufacturing
,”
Resour., Conserv. Recycl.
,
21
(
2
), pp.
79
108
.
30.
Ishigami
,
Y.
,
Yagi
,
H.
,
Kondoh
,
S.
,
Umeda
,
Y.
,
Shimomura
,
Y.
, and
Yoshioka
,
M.
,
2003
, “
Development of a Design Methodology for Upgradability Involving Changes of Functions
,”
EcoDesign’03
, Tokyo, Japan, Dec. 8–11, pp.
235
242
.
31.
Kwak
,
M.
,
Kim
,
L.
,
Sarvana
,
O.
,
Kim
,
H. M.
,
Finamore
,
P.
, and
Hazewinkel
,
H.
,
2012
, “
Life Cycle Assessment of Complex Heavy Duty Off-Road Equipment
,”
ASME
Paper No. DETC2012-70547.
32.
Rebitzer
,
G.
,
Ekvall
,
T.
,
Frischknecht
,
R.
,
Hunkeler
,
D.
,
Norris
,
G.
,
Rydberg
,
T.
,
Schmidt
,
W.-P.
,
Suh
,
S.
,
Weidema
,
B. P.
, and
Pennington
,
D. W.
,
2004
, “
Life Cycle Assessment: Part 1: Framework, Goal and Scope Definition, Inventory Analysis, and Applications
,”
Environ. Int.
,
30
(
5
), pp.
701
720
.
33.
Smith
,
V. M.
, and
Keoleian
,
G. A.
,
2004
, “
The Value of Remanufactured Engines: Life-Cycle Environmental and Economic Perspectives
,”
J. Ind. Ecol.
,
8
(
1–2
), pp.
193
221
.
34.
Goldey
,
C. L.
,
Kuester
,
E.
,
Mummert
,
R.
,
Okrasinski
,
T. A.
,
Olson
,
D.
, and
Schaeffer
,
W. J.
,
2010
, “
Lifecycle Assessment of the Environmental Benefits of Remanufactured Product Within a ‘Green’ Supply Chain
,”
IEEE
International Symposium on Sustainable Systems and Technology
, Washington DC, May 17–19.
35.
Umeda
,
Y.
,
Kondoh
,
S.
, and
Sugino
,
T.
,
2006
, “
Analysis of Reusability Using Marginal Reuse Rate
,”
Ann. CIRP-Manuf. Technol.
,
55
(
1
), pp.
41
44
.
36.
Geyer
,
R.
, and
Jackson
,
T.
,
2004
, “
Supply Loops and Their Constraints: The Industrial Ecology of Recycling and Reuse
,”
Calif. Manage. Rev.
,
46
(
2
), pp.
55
73
.
37.
Guide
,
V. D. R.
, and
Li
,
J.
,
2010
, “
The Potential for Cannibalization of New Products Sales by Remanufactured Products
,”
Decis. Sci.
,
41
(
3
), pp.
547
572
.
38.
Thomas
,
V. M.
,
2003
, “
Demand and Dematerialization Impacts of Second-Hand Markets: Reuse or More Use?
,”
J. Ind. Ecol.
,
7
(
2
), pp.
65
78
.
39.
Ferguson
,
M. E.
, and
Toktay
,
L. B.
,
2006
, “
The Effect of Competition on Recovery Strategies
,”
Prod. Oper. Manage.
,
15
(
3
), pp.
351
368
.
40.
Abbey
,
J. D.
,
Meloy
,
M. G.
,
Guide
,
V. D. R.
, and
Atalay
,
S.
,
2015
, “
Remanufactured Products in Closed-Loop Supply Chains for Consumer Goods
,”
Prod. Oper. Manage.
,
24
(
3
), pp.
488
503
.
41.
Ovchinnikov
,
A.
,
2011
, “
Revenue and Cost Management for Remanufactured Products
,”
Prod. Oper. Manage.
,
20
(
6
), pp.
824
840
.
42.
Ovchinnikov
,
A.
,
Blass
,
V.
, and
Raz
,
G.
,
2014
, “
Economic and Environmental Assessment of Remanufacturing Strategies for Product + Service Firms
,”
Prod. Oper. Manage.
,
23
(
5
), pp.
744
761
.
43.
Guide
,
V. D. R.
, and
Van Wassenhove
,
L. N.
,
2001
, “
Managing Product Returns for Remanufacturing
,”
Prod. Oper. Manage.
,
10
(
2
), pp.
142
155
.
44.
Klausner
,
M.
, and
Hendrickson
,
C. T.
,
2000
, “
Reverse-Logistics Strategy for Product Take-Back
,”
Interfaces
,
30
(
3
), pp.
156
165
.
45.
Liang
,
Y.
,
Pokharel
,
S.
, and
Lim
,
G. H.
,
2009
, “
Pricing Used Products for Remanufacturing
,”
Eur. J. Oper. Res.
,
193
(
2
), pp.
390
395
.
46.
Vadde
,
S.
,
Kamarthi
,
S. V.
, and
Gupta
,
S. M.
,
2007
, “
Optimal Pricing of Reusable and Recyclable Components Under Alternative Product Acquisition Mechanisms
,”
Int. J. Prod. Res.
,
45
(
18–19
), pp.
4621
4652
.
47.
Mitra
,
S.
,
2007
, “
Revenue Management for Remanufactured Products
,”
Omega
,
35
(
5
), pp.
553
562
.
48.
Kwak
,
M.
, and
Kim
,
H.
,
2013
, “
Market Positioning of Remanufactured Products With Optimal Planning for Part Upgrades
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011007
.
49.
Vadde
,
S.
,
Zeid
,
A.
, and
Kamarthi
,
S. V.
,
2011
, “
Pricing Decisions in a Multi-Criteria Setting for Product Recovery Facilities
,”
Omega
,
39
(
2
), pp.
186
193
.
50.
Vorasayan
,
J.
, and
Ryan
,
S. M.
,
2006
, “
Optimal Price and Quantity of Refurbished Products
,”
Prod. Oper. Manage.
,
15
(
3
), pp.
369
383
.
51.
Atasu
,
A.
,
Sarvary
,
M.
, and
Wassenhove
,
L. N. V.
,
2008
, “
Remanufacturing as a Marketing Strategy
,”
Manage. Sci.
,
54
(
10
), pp.
1731
1746
.
52.
Debo
,
L. G.
,
Toktay
,
L. B.
, and
Wassenhove
,
L. N. V.
,
2005
, “
Market Segmentation and Product Technology Selection for Remanufacturable Products
,”
Manage. Sci.
,
51
(
8
), pp.
1193
1205
.
53.
Wu
,
C.-H.
,
2012
, “
Product-Design and Pricing Strategies With Remanufacturing
,”
Eur. J. Oper. Res.
,
222
(
2
), pp.
204
215
.
54.
Mangun
,
D.
, and
Thurston
,
D. L.
,
2002
, “
Incorporating Component Reuse, Remanufacture, and Recycle Into Product Portfolio Design
,”
IEEE Trans. Eng. Manage.
,
49
(
4
), pp.
479
490
.
55.
Jayaraman
,
V.
,
2006
, “
Production Planning for Closed-Loop Supply Chains With Product Recovery and Reuse: An Analytical Approach
,”
Int. J. Prod. Res.
,
44
(
5
), pp.
981
998
.
56.
Franke
,
C.
,
Basdere
,
B.
,
Ciupek
,
M.
, and
Seliger
,
S.
,
2006
, “
Remanufacturing of Mobile Phones—Capacity, Program and Facility Adaptation Planning
,”
Omega
,
34
(
6
), pp.
562
570
.
57.
Parker
,
D.
, and
Butler
,
P.
,
2007
, “
An Introduction to Remanufacturing
,” Centre for Remanufacturing & Reuse, Aylesbury, UK, last accessed Nov. 6, 2012.
58.
Rose
,
C. M.
,
Ishii
,
K.
, and
Stevels
,
A.
,
2002
, “
Influencing Design to Improve Product End-of-Life Stage
,”
Res. Eng. Des.
,
13
(
2
), pp.
83
93
.
59.
Cade
,
W.
, (Founder of PC Rebuilders & Recyclers),
2009
, personal communication.
60.
Atasu
,
A.
,
Guide
,
D. R.
, and
Wassenhove
,
L. N. V.
,
2010
, “
So What If Remanufacturing Cannibalizes My New Product Sales?
,”
Calif. Manage. Rev.
,
52
(
2
), pp.
56
76
.
61.
Schau
,
E.
,
Traverso
,
M.
, and
Finkbeiner
,
M.
,
2012
, “
Life Cycle Approach to Sustainability Assessment: A Case Study of Remanufactured Alternators
,”
J. Remanufacturing.
,
2
(
1
), pp.
1
14
.
62.
Anityasari
,
M.
, and
Kaebernick
,
H.
,
2008
, “
A Concept of Reliability Evaluation for Reuse and Remanufacturing
,”
Int. J. Sustainable Manuf.
,
1
(
1/2
), pp.
3
17
.
63.
U.S. Bureau of Labor Statistics
, “
National Compensation Survey
,” http://www.bls.gov/ncs/ocs/sp/nctb1476.pdf
64.
Painton
,
L.
, and
Campbell
,
J.
,
1995
, “
Genetic Algorithms in Optimization of System Reliability
,”
IEEE Trans. Reliab.
,
44
(
2
), pp.
172
195
.
65.
Microsoft
,
2008
, “
The Enterprise PC Lifecycle
,”
Microsoft Corporation
, Redmond, WA.
66.
Dell
, “
Client Energy Savings Calculator
.”
67.
Kwak
,
M.
,
Behdad
,
S.
,
Zhao
,
Y.
,
Kim
,
H. M.
, and
Thurston
,
D.
,
2011
, “
E-Waste Stream Analysis and Design Implications
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101003
.
68.
Ma
,
J.
,
Kwak
,
M.
, and
Kim
,
H. M.
,
2014
, “
Demand Trend Mining for Predictive Life Cycle Design
,”
J. Cleaner Prod.
,
68
(0), pp.
189
199
.
69.
Tucker
,
C. S.
, and
Kim
,
H. M.
,
2011
, “
Trending Mining for Predictive Product Design
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111008
.
70.
Rutherford
,
D. P.
, and
Wilhelm
,
W. E.
,
1999
, “
Forecasting Notebook Computer Price as a Function of Constituent Features
,”
Comput. Ind. Eng.
,
37
(
4
), pp.
823
845
.
71.
Kwak
,
M.
,
Kim
,
H. M.
, and
Thurston
,
D.
,
2011
, “
Formulating Second-Hand Market Value as a Function of Product Specifications, Age, and Conditions
,”
ASME J. Mech. Des.
,
134
(
3
), p.
032001
.
You do not currently have access to this content.