The aim of this paper is to (1) introduce an approach, called polytope sector-based synthesis (PSS), for synthesizing 2D or 3D microstructural architectures that exhibit a desired bulk-property directionality (e.g., isotropic, cubic, orthotropic, etc.), and (2) provide general analytical methods that can be used to rapidly optimize the geometric parameters of these architectures such that they achieve a desired combination of bulk thermal conductivity and thermal expansion properties. Although the methods introduced can be applied to general beam-based microstructural architectures, we demonstrate their utility in the context of an architecture that can be tuned to achieve a large range of extreme thermal expansion coefficients—positive, zero, and negative. The material-property-combination region that can be achieved by this architecture is determined within an Ashby-material-property plot of thermal expansion versus thermal conductivity using the analytical methods introduced. These methods are verified using finite-element analysis (FEA) and both 2D and 3D versions of the design have been fabricated using projection microstereolithography.

References

References
1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids
,
Cambridge University Press
,
Cambridge, UK
.
2.
Valdevit
,
L.
,
Jacobsen
,
J. A.
,
Greer
,
J. R.
, and
Carter
,
W. B.
,
2011
, “
Protocols for the Optimal Design of Multi-Functional Cellular Structures: From Hypersonics to Micro-Architectured Materials
,”
J. Am. Ceram. Soc.
,
94
(
s1
), pp.
s15
s34
.
3.
Hopkins
,
J. B.
,
Lange
,
K. J.
, and
Spadaccini
,
C. M.
,
2013
, “
Designing Microstructural Architectures With Thermally Actuated Properties Using Freedom, Actuation, and Constraint Topologies
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061004
.
4.
Ashby
,
M. F.
,
2005
,
Materials Selection in Mechanical Design
,
3rd ed.
,
Butterworth-Heinemann
,
Burlington, MA
.
5.
Shen
,
Z.
, and
Hu
,
G.
,
2013
, “
Thermally Induced Vibrations of Solar Panel and Their Coupling With Satellite
,”
Int. J. Appl. Mech.
,
5
(
3
), p.
1350031
.
6.
Sigmund
,
O.
, and
Torquato
,
S.
,
1996
, “
Composites With Extremal Thermal Expansion Coefficients
,”
Appl. Phys. Lett.
,
69
(
21
), pp.
3203
3205
.
7.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
,
45
(
60
), pp.
1037
1067
.
8.
Sigmund
,
O.
, and
Torquato
,
S.
,
1999
, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), pp.
365
379
.
9.
Chen
,
B. C.
,
Silva
,
E. C. N.
, and
Kikuchi
,
N.
,
2001
, “
Advances in Computational Design and Optimization With Application to MEMS
,”
Int. J. Numer. Methods Eng.
,
52
(
1–2
), pp.
23
62
.
10.
Lakes
,
R. S.
,
1996
, “
Cellular Solid Structures With Unbounded Thermal Expansion
,”
J. Mater. Sci. Lett.
,
15
(6), pp.
475
477
.
11.
Lehman
,
J. J.
, and
Lakes
,
R. S.
,
2014
, “
Stiff, Strong, Zero Thermal Expansion Lattices Via Material Hierarchy
,”
Compos. Struct.
,
107
, pp.
654
663
.
12.
Jefferson
,
G.
,
Parthasarathy
,
T. A.
, and
Kerans
,
R. J.
,
2009
, “
Tailorable Thermal Expansion Hybrid Structures
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2372
2387
.
13.
Steeves
,
C. A.
,
Lucato
,
S. L.
,
He
,
M.
,
Antinucci
,
E.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2007
, “
Concepts for Structurally Robust Materials That Combine Low Thermal Expansion With High Stiffness
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1803
1822
.
14.
Yamamoto
,
N.
,
Gdoutos
,
E.
,
Toda
,
R.
,
White
,
V.
,
Manohara
,
H.
, and
Daraio
,
C.
,
2014
, “
Thin Films With Ultra-Low Thermal Expansion
,”
Adv. Mater.
,
26
(
19
), pp.
3076
3080
.
15.
Collishaw
,
P. G.
, and
Evans
,
J. R. G.
,
1994
, “
An Assessment of Expressions for the Apparent Thermal Conductivity of Cellular Materials
,”
J. Mater. Sci.
,
29
(
9
), pp.
2261
2273
.
16.
Boetes
,
R.
, and
Hoogendoorn
,
C. J.
,
1987
, “
Heat Transfer in Polyurethane Foams for Cold Insulation
,”
International Symposium on Heat and Mass Transfer in Refrigeration and Cryogenics
,
International Centre for Heat and Mass Transfer Digital Library
, pp.
14
31
.
17.
Glickman
,
L.
,
Schuetz
,
M.
, and
Sinofsky
,
M.
,
1987
, “
Radiation Heat Transfer in Foam Insulation
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
187
197
.
18.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
,
33
(
10
), pp.
3125
3131
.
19.
Carson
,
J. K.
,
Lovatt
,
S. J.
,
Tanner
,
D. J.
, and
Cleland
,
A. C.
,
2005
, “
Thermal Conductivity Bounds for Isotropic, Porous Materials
,”
Int. J. Heat Mass Transfer
,
48
(
11
), pp.
2150
2158
.
20.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
309
327
.
21.
Tian
,
J.
,
Kim
,
T.
,
Lu
,
T. J.
,
Hodson
,
H. P.
,
Queheillalt
,
D. T.
,
Sypeck
,
D. J.
, and
Wadley
,
H. N. G.
,
2004
, “
The Effects of Topology Upon Fluid-Flow and Heat-Transfer Within Cellular Copper Structures
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3171
3186
.
22.
Hopkins
,
J. B.
,
2013
, “
Designing Hybrid Flexure Systems and Elements Using Freedom and Constraint Topologies
,”
Mech. Sci.
,
4
(
2
), pp.
319
331
.
23.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
,
1995
, “
Anisotropic Symmetries of Linear Elasticity
,”
ASME Appl. Mech. Rev.
,
48
(
5
), pp.
247
285
.
24.
Lakes
,
R.
,
2007
, “
Cellular Solids With Tunable Positive or Negative Thermal Expansion of Unbounded Magnitude
,”
Appl. Phys. Lett.
,
90
(
22
), p.
221905
.
25.
Crandall
,
S. H.
,
Dahl
,
N. C.
, and
Lardner
,
T. J.
,
1999
,
An Introduction to the Mechanics of Solids
,
2nd ed.
,
McGraw-Hill
,
New York
.
26.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D. M.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators, A
,
121
(
1
), pp.
113
120
.
27.
Zheng
,
X.
,
Deotte
,
J.
,
Alonso
,
M. P.
,
Farquar
,
G. R.
,
Weisgraber
,
T. R.
,
Gemberling
,
S.
,
Lee
,
H.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2012
, “
Design and Optimization of a Light-Emitting Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
125001
.
28.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
29.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
New York
.
This content is only available via PDF.
You do not currently have access to this content.